DOI QR코드

DOI QR Code

Design and Implementation of an Approximate Surface Lens Array System based on OpenCL

OpenCL 기반 근사곡면 렌즈어레이 시스템의 설계 및 구현

  • 김도형 (충북대학교 디지털정보융합학과) ;
  • 송민호 (충북대학교 디지털정보융합학과) ;
  • 정지성 (충북대학교 정보산업공학과) ;
  • 권기철 (충북대학교 정보통신공학부) ;
  • 김남 (충북대학교 정보통신공학부) ;
  • 김경아 (충북대학교 의공학과) ;
  • 류관희 (충북대학교 소프트웨어학과)
  • Received : 2014.07.23
  • Accepted : 2014.09.02
  • Published : 2014.10.28

Abstract

Generally, integral image used for autostereoscopic 3d display is generated for flat lens array, but flat lens array cannot provide a wide range of view for generated integral image because of narrow range of view. To make up for this flat lens array's weak point, curved lens array has been proposed, and due to technical and cost problem, approximate surface lens array composed of several flat lens array is used instead of ideal curved lens array. In this paper, we constructed an approximate surface lens array arranged for $20{\times}8$ square flat lens in 100mm radius sphere, and we could get about twice angle of view compared to flat lens array. Specially, unlike existing researches which manually generate integral image, we propose an OpenCL GPU parallel process algorithm for generating real-time integral image. As a result, we could get 12-20 frame/sec speed about various 3D volume data from $15{\times}15$ approximate surface lens array.

무안경식 3D 디스플레이를 위해 사용되는 집적영상은 일반적으로 평면 렌즈어레이로부터 생성되고 있으나, 좁은 시야각으로 인해 관찰자에게 넓은 시야영역을 제공하지 못한다. 이러한 단점을 보완하기 위해 곡면 렌즈어레이가 제안되었으며, 기술적, 비용적 한계로 인해 이상적인 곡면 렌즈어레이보다는 여러 개의 평면렌즈들을 곡면 유형으로 만든 근사곡면(Approximate Surface) 렌즈어레이가 사용된다. 본 논문에서는 반경 100mm의 구에 $20{\times}8$개의 사각형 평면 렌즈들을 배치하여 근사곡면 렌즈어레이를 구성하였으며, 그 결과 약 2배의 시야각을 넓힐 수 있었다. 특히, 기존연구에서는 집적영상을 수작업으로 만들어내고 있었으나, 본 논문에서는 집적영상을 실시간으로 생성하는 OpenCL GPU 병렬 처리 알고리즘을 제안한다. 그 결과, 다양한 3D 볼륨데이터에 대하여 $15{\times}15$ 크기의 근사곡면 렌즈어레이로부터 집적영상을 12-20 frame/sec 속도로 생성할 수 있었다.

Keywords

References

  1. G. Lippmann, "La photographie integrale," C. R Academic Science, Vol.146, pp.446-451, 1908.
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, "Real-Time Pickup Method for a Three-Dimensional Image based on Integral Photography," Applied Optics, Vol.36, pp.1598-1603, 1997. https://doi.org/10.1364/AO.36.001598
  3. K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, "High speed image space parallel processing for computer-generated integral imaging system," Optics Express, Vol.20, No.2, pp.732-740, 2012. https://doi.org/10.1364/OE.20.000732
  4. D. H. Kim, C. Park, J. S. Jeong, K. C. Kwon, N. Kim, and K. H. Yoo, "Parallel processing method for generating elemental images form hexagonal lens array," J. Korea Contents Assoc., Vol.12, No.6, pp.1-8, 2012.
  5. D. H. Kim, M. U. Erdenebat, K. C. Kwon, J. S. Jeong, N. Kim, and K. H. Yoo, "Real-time 3D display system based on computer generated integral imaging technique using enhanced ISPP for hexagonal les array," Applied Optics, Vol.52, No.32, pp.1-9, 2013. https://doi.org/10.1364/AO.52.000001
  6. Y. H. Kim, J. H. Park, H. J. Choi, S. Y. Jung, S. W. Min, and B. H. Lee, "Viewing-angleenhanced integral imaging system using a curved lens array," Optics Express, Vol.12, pp.421-429, 2004. https://doi.org/10.1364/OPEX.12.000421
  7. Y. H. Kim, J. H. Park, S. W. Min, and B. H. Lee, "Wide-viewing-angle three-dimensional integral imaging using a curved screen and a curved lens array," Appled Optics, Vol.44, pp.546-552, 2005. https://doi.org/10.1364/AO.44.000546
  8. 최희진, "집적 영상 기술", 방송공학회지, Vol.16, No.2, pp.39-50, 2011.
  9. D. H. Kim, J. S. Jeong, J. O. Kim, S. O. Kwon, K. C. Kwon, N. Kim, and K. H. Yoo, "Computation issues of elemental images for curved lens array," ICCC 2012, Vol.10, No.2, pp.459-460, 2012.
  10. nVidia, CUDA C programming guide, nVidia Corporation, 2014.
  11. nVidia, OpenCL programming guide for the CUDA architecture, nVidia Corporation, 2010.

Cited by

  1. Comparison and Analysis of Dieting Practices Using Big Data from 2010 and 2015 vol.23, pp.2, 2018, https://doi.org/10.5720/kjcn.2018.23.2.128