DOI QR코드

DOI QR Code

Formation of Organic Chloramines during Monochloramination of Natural Organic Matters

천연유기물과 모노클로라민의 반응시 유기성 클로라민 생성

  • Lee, Wontae (School of Civil and Environmental Engineering, Kumoh National Institute of Technology)
  • 이원태 (금오공과대학교 토목환경공학부)
  • Received : 2014.09.10
  • Accepted : 2014.09.19
  • Published : 2014.09.30

Abstract

This study investigated influence of dissolved organic nitrogen (DON) in natural organic matter (NOM) on the formation of organic chloramines upon monochloramination. Ratios of dissolved organic carbon (DOC) to DON of the 16 NOM isolates ranged from 7 to 47 mg-C/mg-N. Levels of organic chloramines maxed in 24 hours at $0.16mg-Cl_2/mg-N$ in average. The yields were relatively lower, but decay of organic chloramines were slower than those upon chlorination. Organic chloramines formed upon monochloramination decreased by 56% in average in 120 h. NOM with lower DOC/DON ratios formed more organic chloramines. NOM fractions such as hydrophobic, hydrophilic, transphilic, and colloidal did not significantly impact formation of organic chloramines. As the monochloramine doses increased, more organic chloramines were produced ($R^2=0.91$). Overestimation of disinfection capacity due to the formation of organic chloramines may not be concerns for monochloramine systems since only 6% of monochloramine could be converted to organic chloramines upon monochloramination of NOM.

천연유기물질(NOM)과 모노클로라민이 반응할 때 NOM내 용존유기질소(DON)가 유기성 클로라민의 생성에 미치는 영향에 대하여 조사하였다. 실험에 사용된 16가지 NOM의 용존유기탄소(DOC)에 대한 DON의 비(DOC/DON)는 7~47 mg-C/mg-N이었다. NOM 용액의 모노클로라민 반응시 유기성 클로라민 생성 농도는 24시간 후에 최대치(평균값 $0.16mg-Cl_2/mg-N$)로 염소반응에 비하여 유기성 클로라민의 생성량은 적었으나, 분해되어 감소되는 속도는 낮아 반응 120시간 후에 최대치 대비 평균 56% 감소되었다. NOM내 DON의 함유비가 높은 경우(DOC/DON 비가 낮은 경우)에 유기성 클로라민의 생성량이 상대적으로 높게 나타났으나, 소수성, 친수성, 중간성, 콜로이드성 등 NOM의 특성에 따른 유기성 클로라민 생성량의 차이는 크지 않았다. 모노클로라민의 주입량을 증가시킬수록 유기성 클로라민 생성량이 선형적으로 증가하였고($R^2=0.91$), 주입된 모노클로라민 중 6%가 유기성 클로라민으로 전환되어 모노클로라민 소독시 유기성 클로라민 형성에 의한 소독능 저하는 크게 우려할 바는 아닐 수 있다.

Keywords

References

  1. Richardson, S. D., "Disinfection byproducts and other emerging contaminants in drinking water," Trends Anal. Chem., 22, 666-684(2003). https://doi.org/10.1016/S0165-9936(03)01003-3
  2. Krasner, S. W., McQuire, M. J., Jacangelo, J. C., Patania, N. L., Reagan, K. M. and Aieta, E. M., "The occurrence of disinfection byproducts in U.S. drinking water," J. Am. Water Works Assoc., 81, 41-53(1989).
  3. Morris, J. C., "Kinetics of reactions between aqueous chlorine and nitrogen compounds. In: Faust, S. D. and Hunter, J. V. (Eds.)," Principles and Applications of Water Chemistry, John Wiley & Sons, New York, NY, pp. 23-53(1967).
  4. Feng, T. H., "Behavior of organic chloramine in disinfection," J. Water Pollut. Control Fed., 38(4), 614-628(1966).
  5. Wolfe, R. L., Ward, N. R. and Olson, B. H., "Interference in the bactericidal properties of inorganic chloramines by organic nitrogen compounds," Environ. Sci. Technol., 19(12), 1192-1195(1985). https://doi.org/10.1021/es00142a009
  6. Isaac, R. A. and Morris, J. C., "Transfer of active chlorine from chloramine to nitrogenous organic compounds. 2. Mechanism," Environ. Sci. Technol., 19, 810-814(1985). https://doi.org/10.1021/es00139a007
  7. Yoon, J. and Jensen, J. N., "Distribution of aqueous chlorine with nitrogenous compounds-chlorine transfer from organic chloramines to ammonia," Environ. Sci. Technol., 27(2), 403-409(1993). https://doi.org/10.1021/es00039a022
  8. Mash, H., Westerhoff, P. K., Baker, L. A., Nieman, R. A. and Nguyen, M. L., "Dissolved organic matter in Arizona reservoirs: Assessment of carbonaceous sources," Org. Geochem., 35(7), 831-843(2004). https://doi.org/10.1016/j.orggeochem.2004.03.002
  9. Croue, J. P., Korshin, G. V. and Benjamin, M., "Characterization of natural organic matter in drinking water," American Water Works Association Research Foundation, Denver, CO (1999).
  10. Lee, W., "Influence of dissolved organic nitrogen on organic chloramine formation during chlorination," J. Kor. Soc. Environ. Eng., 33(7), 487-490(2011).
  11. Lee, W., Westerhoff, P., Yang, X. and Shang, C., "Comparison of colorimetric and membrane introduction mass spectrometry techniques for chloramine analysis," Water Res., 41 (14), 3097-3102(2007). https://doi.org/10.1016/j.watres.2007.04.032
  12. APHA, AWWA, WEF, "Standard Methods for the Examination of Water and Wastewater," American Public Health Association, Washington, DC(1998).
  13. Snyder, M. P. and Margerum, D. W., "Kinetics of chlorine transfer from chloramine to amines, amino acids, and peptides," Inorg. Chem., 21, 2545-2550(1982). https://doi.org/10.1021/ic00137a005