DOI QR코드

DOI QR Code

정수처리에서 염소 처리시 요오드계 트리할로메탄류 생성에 영향을 미치는 인자들

Factors Affecting the Formation of Iodo-Trihalomethanes during Chlorination in Drinking Water Treatment

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 김경아 (부산광역시 상수도사업본부 수질연구소) ;
  • 송미정 (부산광역시 상수도사업본부 수질연구소) ;
  • 최진택 (부산광역시 상수도사업본부 수질연구소)
  • 투고 : 2014.03.18
  • 심사 : 2014.08.13
  • 발행 : 2014.08.31

초록

본 연구에서는 염소처리시 요오드계 트리할로메탄(iodo-trihalomethanes, I-THMs)의 생성에 영향을 미치는 인자들을 조사하였다. 염소를 소독제로 사용하여 염소 투입농도, 수온, pH, 브롬이온과 요오드이온 농도, 염소 접촉시간, 암모니아성 질소농도 및 용존 유기물질의 특성 변화에 따른 I-THMs 6종에 대한 생성특성을 조사하였다. 수중의 요오드이온과 브롬이온의 농도가 증가할수록 I-THMs의 생성농도가 증가하였으며, 염소 투입농도 및 수온에 따른 I-THMs 생성에서는 염소 투입농도 및 수온 상승에 비례하여 I-THMs 생성농도도 증가하다가 염소 투입농도 3 mg/L 및 수온 $30^{\circ}C$ 이상의 조건에서는 오히려 I-THMs 생성농도가 감소하였다. 또한, 시료수의 pH가 상승할수록 I-THMs의 생성농도가 증가하였다. 수중의 $NH{_4}{^+}-N$ 농도가 증가할수록 염소와 반응하여 생성된 클로라민에 의해 I-THMs 생성농도가 증가하였다. 하수처리장 방류수, 휴믹산 조제수, 조류유래 유기물질 함유수 및 4개의 낙동강 시료수(고령, 매리, 하구 및 진천천)와 같은 7개의 시료수의 유기물질과 I-THMs와의 반응성을 조사한 결과, 하수처리장 최종방류수가 I-THMs와의 반응성($12.31{\mu}g/mg$)이 가장 높았고, 다음으로 휴믹산 시료수($4.96{\mu}g/mg$)로 나타났고, 조류유래 유기물질이 가장 낮은 결과($0.99{\mu}g/mg$)를 나타내었다. 또한, $SUVA_{254}$값과 I-THMs 반응성과의 상관성을 평가한 결과에서 상관계수($r^2$)가 0.002로 매우 낮게 나타나 $SUVA_{254}$값과 I-THMs 생성과는 연관성을 찾기가 어려웠다.

Effects of bromide ($Br^-$) and iodide ($I^-$) concentrations, chlorine ($Cl_2$) doses, pH, temperature, ammonia nitrogen concentrations, reaction times and water characteristics on formation of iodinated trihalomethanes (I-THMs) during oxidation of iodide containing water with chlorine were investigated in this study. Results showed that the yields of I-THMs increased with the high bromide and iodide level during chlorination. The elevated pH significantly increased the yields of I-THMs during chlorination. The formation of I-THMs was higher at $20^{\circ}C$ than $4^{\circ}C$, $10^{\circ}C$ and $30^{\circ}C$. In chloramination study, addition of ammonium chloride ($NH_4Cl$) markedly increased the formation of I-THMs. Among the water samples collected from seven water sources including wastewater treatment plant (WWTP) effluent water (EfOM water), prepared humic containing water (HA water) and algal organic matter (AOM) containing water (AOM water), EfOM water generated the highest yields of I-THMs ($12.31{\mu}g/mg$ DOC), followed by HA water ($4.96{\mu}g/mg$ DOC), while AOM water produced the lowest yields of I-THMs ($0.99{\mu}g/mg$ DOC). $SUVA_{254}$ values of EfOM water, HA water and AOM water were $1.38L/mg{\cdot}m$, $4.96L/mg{\cdot}m$ and $0.97L/mg{\cdot}m$, respectively. The I-THMs yields had a low correlation with $SUVA_{254}$ values ($r^2$ = 0.002).

키워드

참고문헌

  1. Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D. and Thruston, A. D., "Occurrence of new generation of disinfection byproducts," Environ. Sci. Technol., 40, 7175-7185(2006). https://doi.org/10.1021/es060353j
  2. Goslan, E. H., Krasner, S. W., Bower, M., Rocks, S. A., Holmes, P., Levy, L. and Parsons, S. A., "A comparison of disinfection by-products found in chlorinated and chloraminated drinking water in Scotland," Water Res., 43, 4698-4706(2009). https://doi.org/10.1016/j.watres.2009.07.029
  3. Bichsel, Y. and von Gunten, U., "Formation of iodo-trihalomethanes during disinfection and oxidation of iodide containing waters," Environ. Sci. Technol., 34, 2784-2791(2000). https://doi.org/10.1021/es9914590
  4. Hua, G., Reckhow, D. A. and Kim, J., "Effect of bromide and iodide ions on the formation and speciation of disinfection by-products during chlorination," Environ. Sci. Technol., 40, 3050-3056(2006). https://doi.org/10.1021/es0519278
  5. Plewa, M. J., Wagner, E. D., Richardson, S. D., Thruston, A. D., Woo, Y. T. and Mckague, A. B., "Chemical and biological characterization of newly discovered iodoacetic drinking water disinfection by-products," Environ. Sci. Technol., 38, 4713-4722(2004). https://doi.org/10.1021/es049971v
  6. Richardson, S. D., Fasano, F., Ellington, J. J., Crumley, G. F., Buettner, K. M., Evans, J. J., Blount, B. C., Silva, L. K., Waite, T. J., Luther, G. W., McKague, B. A., Miltner, R. J., Wagner, E. D. and Plewa, M. J., "Occurrence and mammalian cell toxicity of iodinated disinfection by-products in drinking water," Environ. Sci. Technol., 42, 8330-8338(2008). https://doi.org/10.1021/es801169k
  7. Hansson, R. C., Henderson, M. J., Jack, P. and Taylor, R. D., "Iodoform taste complaints in chloramination," Water Res., 21(10), 1265-1271(1987). https://doi.org/10.1016/0043-1354(87)90179-5
  8. Cancho, B., Fabrellas, C., Diaz, A. and Ventura, F., "Determination of the odor threshold concentrations of iodinated trhalomethanes in drinking water," J. Agric. Food Chem., 49, 1881-1884(2001). https://doi.org/10.1021/jf001252m
  9. Wei, Y., Liu, Y., Ma, L., Wang, H., Fan, J., Liu, X. and Dai, R. H., "Speciation and formation of iodinated trihalomethane from microbially derived organic matter during the biological treatment of micro-polluted source water," Chemosphere, 92, 1529-1535(2013). https://doi.org/10.1016/j.chemosphere.2013.04.019
  10. Yang, X., Shang, C. and Westerhoff, P., "Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination," Water Res., 41, 1193-1200(2007). https://doi.org/10.1016/j.watres.2006.12.004
  11. Shan, J., Hu, H., Kaplan-Bekaroglu, S. S., Song, H. and Karanfil, T., "The effects of pH, bromide and nitrate on halonitromethane and trihalomethane formation from amino acids and amino sugars," Chemosphere, 86, 323-328(2011).
  12. Bond, T., Huang, J., Graham, N. J. D. and Templeton, M. R., "Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water - a case study," Sci. Total Environ., 470-471, 469-479(2014). https://doi.org/10.1016/j.scitotenv.2013.09.106
  13. Guo, W., Shan, Y. and Yang, X., "Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide," J. Hazard. Mater., 264, 91-97(2014). https://doi.org/10.1016/j.jhazmat.2013.10.064
  14. Jones, D. B., Saglam, A., Triger, A., Song, H. and Karanfil, T., "I-THM formation and speciation: preformed monochloramine versus prechlorination followed ammonia addition," Environ. Sci. Technol., 45, 10429-10437(2011). https://doi.org/10.1021/es202745t
  15. Son, H. J., Song, M. J., Kim, K. A., Yeom, H. S. and Choi, J. T., "Analysis of trace levels of iodinated trihalomethanes in Water using headspace - GC/ECD," J. Kor. Soc. Environ. Eng., 36(1), 35-41(2014). https://doi.org/10.4491/KSEE.2014.36.1.35
  16. Ye, T., Xu, B., Lin, Y. L., Hu, C. Y., Lin, L., Zhang, T. Y. and Gao, N. Y., "Formation of iodinated disinfection byproducts during oxidation of iodide-containing waters with chlorine dioxide," Water Res., 47, 3006-3014(2013). https://doi.org/10.1016/j.watres.2013.03.003
  17. Bard, A. J., Parsons, R. and Jordan, J., Standard Potentials in Aqueous Solutions, Marcel Dekker, Inc., New York, (1985).
  18. Warner, J. A., Casey, W. H. and Dahlgrern, R. A., "Interaction kinetics of $I_2$ (aq) with substituted phenols and humic substances," Environ. Sci. Technol., 34, 3180-3185(2000). https://doi.org/10.1021/es991228t
  19. Fabian, I. and Gordon, G., "The kinetics and mechanism of the chlorine dioxide-iodide ion reaction," Inorg. Chem., 36, 2494-2497(1997). https://doi.org/10.1021/ic961279g
  20. Lengyel, I., Epstein, I. R. and Kustin, K., "Kinetics of iodine hydrolysis," Inorg. Chem., 32, 5880-5882(1993). https://doi.org/10.1021/ic00077a036
  21. Kull, T. P. J., Sjovall, O. T., Tammenkoski, M. K., Backlund, P. H. and Meriluoto, J. A. O., "Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: influence of natural organic matter," Environ. Sci. Technol., 40, 1504-1510(2006). https://doi.org/10.1021/es051729g
  22. Hua, G. and Reckhow, D. A., "DBP formation during chlorination and chloramination: effect of reaction time, pH, dosage, and temperature," J. Am. Water Works Assoc., 100, 82-95 (2007).
  23. Deborde, M. and von Gunten, U., "Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review," Water Res., 42, 13-51(2008). https://doi.org/10.1016/j.watres.2007.07.025