DOI QR코드

DOI QR Code

Numerical Study of the Inertia Effect on Flow Distribution in Micro-gap Plate Heat Exchanger

유동관성에 따른 Micro-Gap 판형 열교환기 내부 유동분배 수치해석

  • Park, Jang Min (School of Mechanical Engineering, Yeungnam Univ.) ;
  • Yoon, Seok Ho (Dept. of Extreme Thermal Systems, Korea Institute of Machinery and Materials) ;
  • Lee, Kong Hoon (Dept. of Extreme Thermal Systems, Korea Institute of Machinery and Materials) ;
  • Song, Chan Ho (Dept. of Extreme Thermal Systems, Korea Institute of Machinery and Materials)
  • 박장민 (영남대학교 기계공학부) ;
  • 윤석호 (한국기계연구원 열공정극한기술연구실) ;
  • 이공훈 (한국기계연구원 열공정극한기술연구실) ;
  • 송찬호 (한국기계연구원 열공정극한기술연구실)
  • Received : 2014.05.19
  • Accepted : 2014.08.25
  • Published : 2014.11.01

Abstract

This paper presents numerical study on flow and heat transfer characteristics in micro-gap plate heat exchanger. In particular, we investigate the effect of flow inertia on the flow distribution from single main channel to multiple parallel micro-gaps. The flow regime of the main channel is varied from laminar regime (Reynolds number of 100) to turbulent regime (Reynolds number of 10000) by changing the flow rate, and non-uniformity of the flow distribution and temperature field is evaluated quantitatively based on the standard deviation. The flow distribution is found to be significantly affected by not only the header design but also the flow rate of the main channel. It is also observed that the non-uniformity of the temperature field has its maximum at the intermediate flow regime.

본 연구에서는 micro-gap 판형 열교환기 내부의 열유동 특성에 대한 수치해석을 수행하였다. 특히 유량 조건에 따라 열교환기의 주 채널로부터 각 micro-gap 으로의 유동분배에 대한 유동관성의 영향에 대하여 조사하였다. 열교환기 주 채널의 유동을 레이놀즈 수 100 부터 10000 까지 변화시키며 그에 따른 각 micro-gap 으로의 유동분배와 온도분포의 불균일 정도를 평가하였다. 수치해석 결과 유동분배는 유동관성에 의해 크게 영향을 받는 것으로 나타났으며, 관성 효과를 감소시킬 수 있는 헤더 설계를 통해 유동분배 불균일 정도를 줄일 수 있었다. 또한 micro-gap 을 통과한 유체의 온도분포의 불균일 정도는 주유량이 증가함에 따라 증가 후 감소 추세를 나타냈다.

Keywords

References

  1. Liu, S., Zhang, Y. and Liu, P., 2007, "Heat Transfer and Pressure Drop in Fractal Microchannel Heat Sink for Cooling of Electronic Chips," Heat and Mass Transfer, Vol. 44, pp. 221-227. https://doi.org/10.1007/s00231-007-0240-0
  2. Lu, B., Meng, W. J. and Mei, F., 2012, "Microelectronic Chip Cooling: an Experimental Assessment of a Liquid-Passing Heat Sink, a Microchannel Heat Rejection Module, and a Microchannel-Based Recirculating-Requid Cooling System," Microsystem Technologies, Vol. 18, pp. 341-352. https://doi.org/10.1007/s00542-011-1397-5
  3. Kim, D., Yu, C.-H., Yoon, S. H. and Choi, J. S., 2011, "Effects of Manifold Geometries on Flow Distribution to Parallel Microchannels," Journal of Mechanical Science and Technology, Vol. 12, pp. 3069-3074.
  4. Hetsroni, G., Mosyak, A., Pogrebnyak, E. and Yarin, L. P., 2005, "Fluid Flow in Micro-Channels," International Journal of Heat and Mass Transfer, Vol. 48, pp. 1982-1998, 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.019
  5. Hetsroni, G., Mosyak, A., Pogrebnyak, E. and Yarin, L. P., 2005, "Heat Transfer in Micro-Channels: Comparison of Experiments with Theory and Numerical Results," International Journal of Heat and Mass Transfer, Vol. 48, pp. 5580-5601. https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.041
  6. Dang, T. and Teng, J.-T., 2011, "Comparisons of the Heat Transfer and Pressure Drop of the Microchannel and Minichannel Heat Exchangers," Heat and Mass Transfer, Vol. 47, pp. 1311-1322. https://doi.org/10.1007/s00231-011-0793-9
  7. Park, H. S. and Punch, J., 2008, "Friction Factor and Heat Transfer in Multiple Microchannels with Uniform Flow Distribution," International Journal of Thermal Sciences, Vol. 51, pp. 4535-4543.
  8. Morini, G. L., 2004, "Single-Phase Convection Heat Transfer in Microchannels: a Review of Experimental Results," International Journal of Thermal Sciences, Vol. 43, pp. 631-651. https://doi.org/10.1016/j.ijthermalsci.2004.01.003
  9. Steinke, M. E. and Kandlikar, S. G., 2010, "Single- Phase Liquid Friction Factors in Microchannels," International Journal of Thermal Sciences, Vol. 45, pp. 1073-1083.
  10. Dang, T., Teng, J.-T. and Chu, J.-C., 2010 "A Study on the Simulation and Experiment of a Microchannel Counter-Flow Heat Exchanger," Applied Thermal Engineering, Vol. 30, pp. 2163-2172. https://doi.org/10.1016/j.applthermaleng.2010.05.029
  11. Chein, R. and Chen, J., 2009, "Numerical Study of the Inlet/Outlet Arrangement Effect on Microchannel Heat Sink Performance," International Journal of Thermal Sciences, Vol. 48, pp. 1627-1638. https://doi.org/10.1016/j.ijthermalsci.2008.12.019
  12. Gunnasegaran, P., Mohammed, H. A., Shuaib, N. H. and Saidur, R., 2010, "The Effect of Geometrical Parameters on Heat Transfer Characteristics of Microchannel Heat Sink with Different Shape," International Communications in Heat and Mass Transfer, Vol. 37, pp. 1078-1086. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014
  13. Liu, J.-T., Peng, X.-F. and Yan, W.-M., 2007, "Numerical Study of Fluid Flow and Heat Transfer in Microchannel Cooling Passages," International Journal of Heat and Mass Transfer, Vol. 50, pp. 1855-1864. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.004
  14. Cho, E. S., Choi, J. W., Yoon, J. S. and Kim, M. S., 2010, "Modeling and Simulation on the Mass Flow Distribution in Microchannel Heat Sinks with Non- Uniform Heat Flux Conditions," International Journal of Heat and Mass Transfer, Vol. 53, pp. 1341-1348. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.025
  15. Kang, M. K., Shin, J. H., Lee, H.-H. and Chun, K., 2005, "Analysis of Laminar Convective Heat Transfer in Micro Heat Exchanger for Stacked Multi-Chip Module," Microsystem Technologies, Vol. 11, pp. 1176-1186. https://doi.org/10.1007/s00542-005-0590-9
  16. Tonomura, O., Tanaka, S., Noda, M., Kano, M., Hasebe, S. and Hashimoto, I., 2004, "CFD-Based Optimal Design of Manifold in Plate-Fin Microdevices," Chemical Engineering Journal, Vol. 101, pp. 397-402, 2004. https://doi.org/10.1016/j.cej.2003.10.022
  17. Commenge, J. M., Falk, L., Corrious, J. P. and Matlosz, M., 2002, "Optimal Design for Flow Uniformity in Microchannel Reactors," AIChE Journal, Vol. 48, pp. 345-358. https://doi.org/10.1002/aic.690480218
  18. Guan, N., Liu, Z.-G. and Zhang, C.-W., 2012, "Numerical Investigation on Heat Transfer of Liquid Flow at Low Reynolds Number in Microcylinder- Groups," Heat and Mass Transfer, Vol. 48, pp. 1141-1153. https://doi.org/10.1007/s00231-011-0956-8
  19. Ryu, J. H., Choi, D. H. and Kim, S. J., 2003, "Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink," International Journal of Heat and Mass Transfer, Vol. 46, pp. 1553-1562. https://doi.org/10.1016/S0017-9310(02)00443-X
  20. Pope, S. P., 2000, Turbulent Flows, Cambridge University Press.
  21. Menter, F. R., 1994, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, pp. 1596-1605.
  22. Kandlikar, S. G., Schmitt, D., Carrano, A. L. and Taylor, J. B., 2005, "Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels," Physics of Fluids, Vol. 17, 100606 https://doi.org/10.1063/1.1896985
  23. Webb, R. L., Eckert, E. R. G., and Goldstein, R. J., 1971, "Heat Transfer and Friction in Tubes with Repeated-Rib Roughness," International Journal of Heat and Mass Transfer, Vol. 14, pp. 601-617. https://doi.org/10.1016/0017-9310(71)90009-3
  24. Bergman, T. L., Lavine, A. S., Incropera, F. P. and Dewitt, D. P., 2011, Fundamentals of Heat and Mass Transfer, John Wiley & Sons. Inc., 7th Ed.