DOI QR코드

DOI QR Code

느티만가닥버섯의 재래종과 감마선 돌연변이체들의 유전적 변이

Genetic variation of local varieties and mutants groups induced by gamma ray in Hypsizigus marmoreus

  • 김종봉 (대구가톨릭대학교 의생명과학과) ;
  • 유동원 (대구가톨릭대학교 의생명과학과)
  • Kim, Jong-Bong (Department of Medical Life Science, Catholic University of Daegu) ;
  • Yu, Dong-Won (Department of Medical Life Science, Catholic University of Daegu)
  • 투고 : 2014.07.17
  • 심사 : 2014.08.12
  • 발행 : 2014.09.30

초록

본 연구는 느티만가닥버섯 20품종 버섯, 잿빛만가닥 3품종 버섯, 땅지만가닥 1품종 및 돌연변이 느티만가닥버섯 20종류의 유전적 변이를 RAPD 방법에 의해 분석하고자 수행하였다. 이들은 한국, 중국, 일본, 대만 등에서 유래한 것들이다. 느티만가닥버섯에 감마선을 조사하여 돌연변이체를 만들었다. 본 연구에 이용한 primer들은 40종류였고 이 중 31종류의 primer등이 반응을 나타내었다. RAPD 결과들을 분석한 결과 이 들 품종으로는 7개의 cluster로 나뉘어 졌다. 돌연변이체들은 유전적으로 유의적 차이가 있는 subgroup으로 나눌 수 있었다. 이상의 결과들은 본 실험에 사용한 primer들과 포자의 감마선 조사 등을 버섯의 신품종 개발에 유용한 도구가 될 것으로 생각된다.

This research was carried out to analyze the genetic variation of 18 wild strain, 2 breed varieties and 20 mutants of Hypsizygus marmoreus by random amplification of polymorphic DNA(RAPD). Also, 3 strains of Lyophyllum decartes and 1 strain of Lyophyllum shimeji were used. These mushrooms were collected from korea, china, Taiwan and Japan. Spores of H. marmoreus JV-2 strain were irradiated by gamma ray for mutagenesis. 40 kind of primers were used for this reaserch. Number of reaction primer were 31. Electrophorectic patterns of RAPD showed genetic variation. In phylogenetic tree, they were divided into seven group. Discriminative differences were observed between wild strain and mutants in H. marmoreus. These results might suggest that these primers and gamma ray irradiation of spores were useful tools for developing new strain for mushroom.

키워드

참고문헌

  1. Chang HY. 2008. SWOT analysis for direction of korean mushroom industry. Korean J mushroom Sci. 6: 63-67.
  2. Chang HY, Goo CD, Park YS, Ko IS, Kim YS. 2010. Approach on the multifunctionality of mushroom. Korean J muschroom Sci. 8: 1-5.
  3. Chang JS, Son JK. Gao L, Oh E. 2004. Inhibition of cell cycle progression on HepG2 cells by hypsiziprenol A9, isolated from Hypsizigus marmoreus. Cancer Lett. 212: 7-14. https://doi.org/10.1016/j.canlet.2004.03.013
  4. Farris JS, Albert VA, Kallersj O, Lipscomb D, Felsen J. 1985. Confidence limit on phylogenesis. An approach using bootstrap. J Evolution 39: 783-791. https://doi.org/10.2307/2408678
  5. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. J Evolution 39: 783-791. https://doi.org/10.2307/2408678
  6. Ikewa T, Saito H, Feng W, Zhang H, Li L, Matsuzwa T. 1992. Antitumor activity of Hypsizigus marmoreus. 1. Antitumor activity of extracts and polysaccharides. Chem. Pharm. Bull. 40: 1954-1957. https://doi.org/10.1248/cpb.40.1954
  7. Jung YS, Kim JB. 2013. A study of mcrophological characteristics and hybridization on Lepista nuda. Korean J mushroom Sci. 11: 1-8. https://doi.org/10.14480/JM.2013.11.1.001
  8. Kim JB, Jeong JI. 2013. Genetic variation in Flammulina velutipes. J Life Science. 21: 1434-1442. https://doi.org/10.5352/JLS.2011.21.10.1434
  9. Kim JK, Moon DH, Seo GS, Kang HW. 2011. Mutagenesis of Hypsizygus marmoreus by gamma ray irradiation. Korean J Mycol. 39: 231-234. https://doi.org/10.4489/KJM.2010.39.3.231
  10. Kluge AG. 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistic, 12: 99-124. https://doi.org/10.1111/j.1096-0031.1996.tb00196.x
  11. Knowledgeworks Co. 2012. Strategic plan for the 'Golden Seed Project' through analysis of the seed industry. IPET. Final report.
  12. Lam SK, Ng TB. 2001. Hypsin, a novel thermostable ribosome inactivating protein with antifugal and antiproliferative activities from fraiting bodies of edible mushroom Hypsizigus marmoreus. Biochem. Biophys. Res. Comm. 285: 1071-1075. https://doi.org/10.1006/bbrc.2001.5279
  13. Lim YJ, Lee CY, Park JE, Kim SW, Lee HY, Ro HS. 2010. Molecular genetic classification of Hypsizigus marmoreus and development of strain-specific DNA markers. Korean J Mycol. 38: 34-39. https://doi.org/10.4489/KJM.2010.38.1.034
  14. Matsuzawa T, Saitoh H, Sano M, Tomita L, Ohkwa M, Ikekawa T. 1998. Studies on antioxidant effects of Hypsizigus marmoreus. II. Effects of Hypsizigus marmoreus for antioxidant activities of tumor bearing mice. Yakugaku Zasshi 118: 476-481. https://doi.org/10.1248/yakushi1947.118.10_476
  15. Nei M. 1972. Genetic distance between populations. Amer. Naturalist 106: 283-292. https://doi.org/10.1086/282771
  16. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SBH, Hood LE. 1986. Fluorescence detection in automated DNA sequence analysis. Nature 321: 674-679. https://doi.org/10.1038/321674a0
  17. Sneath PHA, Sokal RR. 1973. Numerical taxanomy. pp. 573. W. H. Freeman, San Francisco.
  18. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. Academic Press Inc. Sandiego, California.
  19. Zanabaatar B, kang MG, Seo GS, Lee YW, Lee JS. 2012. Analysis of nutritional characteristics and physiological functionality of Hypsizygus marmoreus (Brown cultivar). Korean J Mycol. 40(2): 104-108. https://doi.org/10.4489/KJM.2012.40.2.104