DOI QR코드

DOI QR Code

Effects of Korean Zingiber mioga R. (Flower Buds and Rhizome) Extract on Memory

한국산 양하(꽃봉오리와 지하경)의 인지 기능 개선 효과

  • Cho, Kyo-Hee (Department of Alternative Medicine, Kyonggi University) ;
  • Oh, Myung-Sook (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Kim, Hyo-Geun (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Lee, Sun-Hee (Department of Food and Nutrition, Shinhan University) ;
  • Chung, Kun-Sub (Division of Biological Science and Technology, Yonsei University) ;
  • Kim, Ae-Jung (Department of Alternative Medicine, Kyonggi University)
  • 조교희 (경기대학교 대체의학대학원) ;
  • 오명숙 (경희대학교 나노의약생명과학과) ;
  • 김효근 (경희대학교 나노의약생명과학과) ;
  • 이선희 (신한대학교 식품영양학과) ;
  • 정건섭 (연세대학교 생명과학기술학부) ;
  • 김애정 (경기대학교 대체의학대학원)
  • Received : 2014.07.11
  • Accepted : 2014.08.21
  • Published : 2014.10.31

Abstract

This study investigated the biological activities and effects of Korean Zingiber mioga R. (flower buds and rhizome) on memory. The general composition, minerals, anti-oxidative activities, and AChE inhibitory effects were analyzed, and NORT (Novel object recognition test) and Y-Maze test in vivo were performed. The general contents (moisture, crude fat, crude protein, and crude ash; wet basis) of ZB (flower buds) were 91.96%, 0.15%, 1.99%, and 11.90%, respectively. The general contents (moisture, crude fat, crude protein, and crude ash; wet basis) of ZR (rhizome) were 75.21%, 0.53%, 2.20%, and 9.50%, respectively. The macro mineral contents (Ca, P, Na, and K) of ZB were 31.70 mg%, 15.20 mg%, 8.20 mg%, and 258.60 mg%, respectively. Inhibitory effects (IC50 value) of DPPH and ABTS radicals were higher with ZBD (flower buds water extract) than with ZBE (flower buds EtOH extract), ZRD (rhizome water extract) or ZRE (rhizome EtOH extract). AChE inhibitory effect of ZBD was higher and that of ZRD. NORT and Y-Maze test were performed with scopolamine-induced mice treated with ZBD and ZBE. In NORT, effects of ZBD and ZBE were similar to that of donepezil. In the Y-maze test, performances of ZBD and ZBE-treated mice were similar to that of the normal group. These results suggest that Korean Zingiber mioga R. has potential to be developed into a new functional food for cognition enhancement in the global food market.

본 연구에서는 한국에서 자생하는 양하를 부위(꽃봉오리와 지하경)별로 일반성분, 다량 무기질 함량, 항산화 활성, AChE 저해 활성 및 인지 기능 동물실험을 측정을 통하여 우리나라 고유의 천연 식물자원의 우수성을 규명하고자 하였다. 양하의 꽃봉오리와 지하경의 일반성분을 분석하여 비교해본 결과 양하 꽃봉오리의 수분 함량이 가장 높게 나타났다. 조단백질 함량은 꽃봉오리, 지하경 순으로 높게 나타났다. 조지방 함량은 차이가 거의 없었고 탄수화물은 지하경에서 가장 높게 나타났다. 꽃봉오리와 지하경의 무기질 함량에서는 지하경이 Ca($62.30{\pm}0.46mg%$), K($656{\pm}1.58mg%$), Na($19.10{\pm}0.52$ mg%), P($70.10{\pm}1.54mg%$)으로 더 높게 나타났다. 항산화 비타민 A, C, E를 분석해 봤을 때 비타민 A는 분석되지 않았으며, 비타민 E의 함량은 지하경이 $0.50{\pm}0.02mg$으로 분석되었다. 비타민 C의 경우, 꽃봉오리에서는 분석되지 않았으나 지하경에서는 $0.70{\pm}0.08mg$이 분석되었다. 양하의 꽃봉오리 열수 추출물, 꽃봉오리 70% 에탄올 추출물과 지하경 열수 추출물, 지하경 70% 에탄올 추출물의 total polyphenol contents를 측정한 결과, 꽃봉오리 추출물이 지하경보다, 열수 추출물이 에탄올 추출물보다 총 페놀성 화합물 함량이 우수하게 나타났다. 농도를 달리하여(62.5, 125, 250 및 $500{\mu}g/mL$) DPPH radical scavenging 활성을 측정한 결과 모든 추출물에서 농도 의존적으로 DPPH radical scavenging 활성이 증가하였고, 가장 좋은 활성을 나타낸 것은 꽃봉오리 열수 추출물로 나타났다. ABTS radical scavenging 역시 모든 추출물에서 농도에 의존적으로 증가하는 경향을 나타내었고, 꽃봉오리 열수 추출물에서 가장 우수하게 측정되었다. 양하 꽃봉오리의 열수 추출물과 에탄올 추출물로 아세틸콜린에스터라아제 저해 활성을 특정한 결과, 양성대조군인 tacrine과 비교 시 양하의 꽃봉오리 열수 추출물이 꽃봉오리 에탄올 추출물에 비해 아세틸콜린에스터라아제 저해 활성이 높게 나타났다. 인지 기능 개선효과를 평가하기 위해 scopolamine으로 기억 손상을 유발한 mice에서 물체인식 실험(NORT)과 Y-미로실험(Y-maze)을 이용한 행동시험을 수행한 결과, NORT에서 양하 꽃봉오리의 열수 추출물과 에탄올 추출물이 거의 유사하게 정상군과 비슷한 정도의 높은 효능을 나타내었고, Y-maze test에서도 양하 꽃봉오리의 열수 추출물과 에탄올 추출물 모두에서 항치매 약물인 donepezil과 유사한 효능을 보였다. 이상의 결과를 종합하여 볼 때 양하 추출물 특히 꽃봉오리 부위를 열수 추출했을 때 항산화 활성, 아세틸콜린에스터라아제 저해 활성, 인지 기능 및 학습능력 증진에 효과적으로 작용하여 천연 치매 예방물질 소재로서 이용가치가 높아 앞으로 양하에 대한 계속적인 연구가 필요할 것으로 생각되었다.

Keywords

References

  1. Im CM. 2012. Ministry of health and welfare statistical year book. Ministry of Health and Welfare, Seoul, Korea. p 58.
  2. Lee MH. 2007. A study of diet therapy program for prevention and rehabilitation for the age-related disease. J Collection of Dissertations Busan Women's College 28: 321-359.
  3. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO. 1989. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. JAMA 262: 2551-2556. https://doi.org/10.1001/jama.1989.03430180093036
  4. Nordberg A. 1996. Pharmacological treatment of cognitive dysfunction in dementia disorders. Acta Neurol Scand Suppl 168: 87-92.
  5. Boje KM, Arora PK. 1992. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587: 250-256. https://doi.org/10.1016/0006-8993(92)91004-X
  6. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilboum MR. 1999. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease. Neurology 52: 691-699. https://doi.org/10.1212/WNL.52.4.691
  7. Davies P, Maloney AF. 1976. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 2: 1403-1410.
  8. Kurz A. 1998. The therapeutic potential of tacrine. J Neural Transm Suppl 54: 295-299. https://doi.org/10.1007/978-3-7091-7508-8_29
  9. Doody RS. 1999. Clinical profile of donepezil in the treatment of Alzheimer's disease. Gerontology 45(Suppl 1): 23-32.
  10. Bianchetti A, Ranieri P, Margiotta A, Trabucchi M. 2006. Pharmacological treatment of Alzheimer's disease. Aging Clin Exp Res 18: 158-162. https://doi.org/10.1007/BF03327433
  11. Choi SK, Suh YN. 1993. Effects of basal media and growth regulators on plant regeneration and growth of plantlet. Korean J Medicinal Crop Soc 1: 38-42.
  12. Kim TS. 1998. Natural plant of Korea. Seoul National University Publishing Department, Seoul, Korea. p 203.
  13. Hiromo I, Mori H, Kato K, Hosaka S, Aiso S. 1982. Carcinogenicity examination of inflorescence of Zingiber mioga Roscoe. Cancer Lett 15: 203-208. https://doi.org/10.1016/0304-3835(82)90119-7
  14. Masako A, Yoshio O, Yasushi U, Yasujiro M, Yoshimasa N, Toshihiko O. 2006. A novel labdane-type trialdehyde from myoga (Zingiber mioga Roscoe) that potently inhibits human platelet aggregation and human 5-lipoxygenase. Biosci Biotechnol Biochem 70: 2494-2500. https://doi.org/10.1271/bbb.60226
  15. Miyoshi N, Nakamura Y, Ueda Y, Abe M, Ozawa Y, Uchida K, Osawa T. 2003. Dietary ginger constituents, galanals A and B, are potent apopotosis inducers in human T lymphoma Jurkat cells. Cancer Lett 199: 113-119. https://doi.org/10.1016/S0304-3835(03)00381-1
  16. Lee JW, Chon SU, Han SK, Choi DG, Ryu J. 2007. Effects of antioxidant and flavor components of Zingiber mioga Rosc. Korean J Medicinal Crop Sci 15: 203-209.
  17. Jeong SJ, Im SI, Jung BM. 2005. Comparison of nutritional constituents of native Yangha (Zingiber mioga) in Yeosu and Cheju area. Korean J Food Sci Technol 37: 713-716.
  18. Kim HS. 2012. Preparation and evaluation of Yangha mook using the Zingiber mioga R. MS Thesis. University of Kyonggi, Seoul, Korea.
  19. Shin JH, Lee SJ, Sung NJ. 2002. Effects of Zingiber mioga root and Zingiber officinale on the lipid concentration in hyperlipidemic rats. J Korean Soc Food Sci Nutr 31: 679-684. https://doi.org/10.3746/jkfn.2002.31.4.679
  20. Jang KC, Kim SC, Song EY, Kim KH, Kwon HM, Kang SH, Park KH, Jung YH. 2003. Isolation and substances from the rhizome of Zingiber mioga Rosc. J Korean Soc Agric Chem Biotechnol 46: 246-250.
  21. AOAC. 1990. Official methods of analysis of AOAC Intl. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 870.
  22. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 30-31.
  23. Arnous A, Makris DP, Kefalas P. 2001. Effect of principal polyphenol components in relation to antioxidant characteristics of aged red wines. J Agric Food Chem 49: 5736-5742. https://doi.org/10.1021/jf010827s
  24. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free-radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  25. Jeong JH, Jung H, Lee SR, Lee HJ, Hwang KT, Kim TY. 2010. Anti-oxidant, anti-proliferative and anti-inflammatory activities of the extracts from black berry fruits and wine. Food Chem 123: 338-344. https://doi.org/10.1016/j.foodchem.2010.04.040
  26. Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-90. https://doi.org/10.1016/0006-2952(61)90145-9
  27. Jo MH, Ham IK, Lee GH, Lee JK, Lee GS, Park SK, Kim TI, Lee EM. 2011. Comparison of active ingredients between field grown and in vitro cultured rhizome of Korean native ginger (Zingiber officinale Roscoe). Korean J Plant Res 24: 404-412. https://doi.org/10.7732/kjpr.2011.24.4.404
  28. Jeong IK. 1999. Effect of supplementation of vitamin E and vitamin C on neurotransmitters and TBARS level in rats with dementia induced by scopolamine treatment. PhD Dissertation. University of Chung-Ang, Seoul, Korea.
  29. Krinsky NI. 1989. Antioxidant functions of carotenoids. Free Radic Bio Med 7: 617-635. https://doi.org/10.1016/0891-5849(89)90143-3
  30. Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci 2: 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  31. Markesbery WR, Camey JM. 1999. Oxidative alterations in Alzheimer's disease. Brain Pathol 9: 133-146.
  32. Bae JS, Kim TH. 2011. Pancreatic lipase inhibitory and antioxidant activites of Zingeiber officinale extracts. Korean J Food Preserv 18: 390-396. https://doi.org/10.11002/kjfp.2011.18.3.390
  33. Deutsch JA. 1971. The cholinergic synapse and the site of memory. Science 174: 788-794. https://doi.org/10.1126/science.174.4011.788
  34. Bartus RT, Dean RL 3rd, Beer B, Lippa AS. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408-414. https://doi.org/10.1126/science.7046051
  35. Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. 1981. Alzheimer's disease: evidence of selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122-126. https://doi.org/10.1002/ana.410100203
  36. Coyle JT, Price DL, DeLong MR. 1983. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219: 1184-1190. https://doi.org/10.1126/science.6338589

Cited by

  1. Quality Characteristics of Yangha (Zingiber mioga Rosc) Pickle with Soy Sauce during Storage vol.26, pp.3, 2016, https://doi.org/10.17495/easdl.2016.6.26.3.260
  2. Biological Activity and Manufacturing of Yanggeng with Yangha Flower Buds vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1180
  3. Effects of Myoga on Memory and Synaptic Plasticity by Regulating Nerve Growth Factor-Mediated Signaling vol.30, pp.2, 2016, https://doi.org/10.1002/ptr.5511
  4. Zingiber mioga reduces weight gain, insulin resistance and hepatic gluconeogenesis in diet-induced obese mice vol.12, pp.1, 2016, https://doi.org/10.3892/etm.2016.3331
  5. Anti-Oxidative and Anti-Diabetic Effects of Butanol Faction from Yangha (Zingiber mioga ROSC) vol.34, pp.1, 2018, https://doi.org/10.9724/kfcs.2018.34.1.105
  6. 양하를 첨가한 김치의 품질특성에 관한 연구 vol.18, pp.3, 2017, https://doi.org/10.5762/kais.2017.18.3.400
  7. 콜린 에스테라제 저해효과 보유 식물 추출물 탐색 vol.31, pp.5, 2018, https://doi.org/10.7732/kjpr.2018.31.5.433