DOI QR코드

DOI QR Code

Numerical Analysis of the Complex Permittivity of MWNT added Epoxy Depending on Agglomeration Size

에폭시 내부의 MWNT 응집 크기에 따른 복소유전율 변화의 해석적 관찰

  • Received : 2014.08.14
  • Accepted : 2014.10.29
  • Published : 2014.10.31

Abstract

This paper predicts the complex permittivity of MWNT added epoxy depending on agglomeration by numerical analysis. 1wt% MWNT added epoxy specimen is prepared using 3-roll-mill method and its complex permittivity is measured in X-band (8.2~12.4 GHz) using freespace measurement system. The analytic model is comprised of cube epoxy and perfect sphere agglomeration. The complex permittivity of the agglomeration model is predicted by complex permittivity mixing rule using the measured complex permittivity of epoxy and 1 wt% MWNT added epoxy. Commercial electromagnetic analysis software, CST, is used to obtain S-parameter of the analytic model and MATLAB code is used to calculate complex permittivity from the S-parameter. It is confirmed that the complex permittivity increases when the agglomeration size decreases.

본 연구에서는 MWNT(Multi-walled carbon nanotube)의 응집크기와 복소유전율의 관계를 수치해석적인 방법을 통하여 접근하였다. 이를 위하여 3-roll-mill 장비를 사용하여 1 wt% MWNT가 첨가된 에폭시 시편을 제작하였다. 제작된 시편은 X-band(8.2~12.4 GHz)에서 네트워크 분석기와 자유공간 측정 장비를 이용하여 복소유전율을 측정하였다. 측정된 복소유전율과 복소유전율 혼합 모델을 이용하여 에폭시와 MWNT 응집으로 이루어진 해석모델의 유전율을 결정하였다. 해석 모델은 앞서 말한 것과 같이 에폭시와 MWNT의 응집으로 이루어져 있으며, 정육면체 에폭시 내에 구 형태의 MWNT 응집을 가정하였다. 이에 따라 에폭시와 MWNT의 부피비율은 고정되며, 변수는 응집의 크기로 한정하였다. 수치해석은 상용 전자기 해석프로그램인 CST를 사용하였다. CST로부터 모델의 S-parameter를 얻었고, 복소유전율은 Nicolson 방법을 사용하여 얻었다. MATLAB으로 코드를 만들어 S-parameter 로부터 복소유전율을 얻었다. 수치해석 결과 응집의 크기가 작아질수록 복소유전율 값이 높아지는 모습을 살펴볼 수 있었으며, 이는 나노 입자의 이용에 있어서 분산도는 기계적인 특성뿐 아니라 전자기적 특성인 복소유전율에도 영향을 미친다고 볼 수 있으며, 같은 나노 입자 함량에서 분산도가 좋을수록 높은 복소유전율을 기대할 수 있다.

Keywords

References

  1. Park, J.Y., and Kim, J.Y., "The Role of Nano-particles on the Material Properties of Epoxy/$Fe_2O_3$ Nano-composites," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 30, No. 5, 2002, pp. 88-93. https://doi.org/10.5139/JKSAS.2002.30.5.088
  2. Lee, S.E., Lee, W.J., and Kim, C.G., "A Study on Tensile Properties of Multi-Welled Carbon Nanotube/Epoxy Composites," Journal of the Korean Society for Composite Materials, Vol. 17, No. 6, 2004, pp. 1-7
  3. Kong, J.W., Chung, S.S., and Kim, T.W., "A Study on Mechanical Properties of Carbon Nanofiber/Epoxy Composites with Dispersion Methods," Proceeding of the Spring Conference of the Korean Society for Composite Materials, Pohang, Korea, Apr. 2004, pp. 151-154.
  4. Sandler, J., Shaffer, M.S.P., Prasse, T., Bauhofer, W., Schulte, K., and Windle, A.H., "Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties," Polymer, Vol. 40, 1999, pp. 5967-5971. https://doi.org/10.1016/S0032-3861(99)00166-4
  5. Kim, H.C., Lee, S.E., Kim, C.G., and Lee, J.J., "A Study on the Dispersion of Multi-walled Nanotube of MWNT/PMMA Nanocomposites," Proceeding of the Fall Conference of the Korean Society for Composite Materials, Daejeon, Korea, Oct. 2003, pp. 29-32.
  6. Li, C.C., Lin, J.L., Huang, S.J., Lee, J.T., and Chen, C.H., "A New and Acid-exclusive Method for Dispersing Carbon Multiwalled Nanotubes in Aqueous Suspensions," Colloids and Surfaces A: Physicochemical and Engineering. Aspects, Vol. 297, No. 1, 2007, pp. 275-281. https://doi.org/10.1016/j.colsurfa.2006.10.022
  7. Ausman, K.D., Piner, R., Lourie, O., Ruoff, R.S., and Korobov, M., "Organic Solvent Dispersions of Single-walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes," The Journal of Physical Chemistry B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, Vol. 103, No. 38, 2000, pp. 8911-8915.
  8. Patole, A.S., Patole, S.P., Kang, H., Yoo, J.B., Kim, T.H., and Ahn, J.H., "A Facile Approach to the Fabrication of Graphene/ polystyrene Nanocomposite by in situ Microemulsion Polymerization," Journal of Colloid and Interface Science, Vol. 350, No. 2, 2010, pp. 530-537. https://doi.org/10.1016/j.jcis.2010.01.035
  9. Pang, H., Chen, T., Zhang, G., Zeng, B., and Li, Z.M., "An Electrically Conducting Polymer/graphene Composite with a very Low Percolation Threshold," Materials Letters, Vol. 64, No. 20, 2010, pp. 2226-2229. https://doi.org/10.1016/j.matlet.2010.07.001
  10. Shen, J., Li, N., Shi, M., Hu, Y., and Ye, M., "Covalent Synthesis of Organophilic Chemically Functionalized Graphene Sheets," Journal of Colloid and Interface Science, Vol. 348, 2010, pp. 377-383 https://doi.org/10.1016/j.jcis.2010.04.055
  11. Rosca, I.D., and Hoa, S.V., "Highly Conductive Multiwall Carbon Nanotube and Epoxy Composites Produced by Three-roll Milling," Carbon, Vol. 47, No. 8, 2009, pp. 1958-1968. https://doi.org/10.1016/j.carbon.2009.03.039
  12. Lee, S.E., Park, K.Y., Kim, C.G., and Han, J.H., "A Study on Permittivity of Multi-walled Carbon Nanotube/Epoxy Composites," Journal of the Korean Society for Composite Materials, Vol. 17, No. 3, 2004, pp. 38-44.
  13. Nicolson, A.M., and Ross, G.F., "Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques," IEEE Transactions on Instrumentation and Measuerment, Vol. 19, No. 4, 1970, pp. 377-382. https://doi.org/10.1109/TIM.1970.4313932

Cited by

  1. Characteristics of silicon carbide fiber-reinforced composite for microwave absorbing structures 2018, https://doi.org/10.1016/j.compstruct.2018.01.081
  2. Microwave Absorbing Structure Using Semiconductive Fiber Reinforced Composite vol.29, pp.3, 2016, https://doi.org/10.7234/composres.2016.29.3.098
  3. Circuit-analog radar absorbing structures using a periodic pattern etched on Ni-coated glass fabric vol.281, pp.None, 2022, https://doi.org/10.1016/j.compstruct.2021.115099