초록
실시간 교통정보는 현장에 설치된 차량검지기가 수집하는 교통량, 속도, 점유율 자료를 기반으로 생성된다. 따라서 검지기 성능을 일정수준으로 유지시키는 것이 중요하다. 이를 위해 ITS 관리기관에서는 주기적으로 검지기에 대한 성능평가를 수행한다. 일반적으로 검지기 성능평가는 기준값을 생성하는 장비(기준장비)와 평가대상 검지기가 수집하는 자료를 상호 비교함으로써 수행된다. 여기서 유의할 점은 기준장비 수집값 역시 평가대상 검지기 자료와 같이 오차 및 불확도를 포함하고 있다는 것이다. 또한 검지기 평가가 표본집단에 대해 이루어지기 때문에 이를 모집단의 결과로 표현하기 위해서는 신뢰구간 개념이 적용되어야 한다. 그러나 현재 국내 검지기 성능평가는 합리적인 방법론 부재로 인해 기준값 불확도 및 신뢰구간 개념을 적용하지 않고 있다. 따라서 본 연구에서는 기준값 불확도 및 신뢰구간 개념을 적용한 성능평가 방법론을 제시했고, 이를 루프, 영상, 레이더 검지기 성능평가에 적용했다. Over-count, Under-count 상쇄효과를 제거하기 위해 개별차량단위 자료를 평가하였고 그 결과, 제시된 방법론이 검지기 성능평가에 효과적으로 적용될 수 있음을 입증하였다.
Due to the importance of vehicle detector which plays an essential role in generating real-life traffic information, maintaining detector data quality is preeminent in advanced traffic management and information systems (ATMIS). To this end, agencies periodically conduct performance tests on detectors. Detector evaluation is generally performed by comparing baseline data with corresponding detector data. Here, two important things need to be addressed; one is errors (or uncertainties) included in baseline data and the other is the confidence interval concept to represent evaluation results of sample data to corresponding ones of population. To resolve these problems, a new detector evaluation scheme is introduced and the scheme is applied to individual level detector evaluations of loop, video image, and radar detectors. The purpose of individual level evaluation is to eliminate the balancing (or cancelling-out) effects of over- and under-counts. As a consequence, the proposed scheme is proven to be effectively applied to real-world detector evaluations.