Thermal Distribution in Living Tissue during Warm Needling Therapy

온침 시술 시 생체 조직 내 열분포 분석에 관한 연구

  • Kim, Jongyeon (Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Lee, Jong-Soo (Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Kyung Hee University)
  • 김종연 (경희대학교 한의과대학 한방재활의학과교실) ;
  • 이종수 (경희대학교 한의과대학 한방재활의학과교실)
  • Received : 2014.06.16
  • Accepted : 2014.07.08
  • Published : 2014.07.31

Abstract

Objectives This study aims to analyze a thermal distribution in biological living tissue during warm needling therapy by using a finite element method. The analysis provides an understanding of warm needling's efficacy and safety. Methods A model which consisted of four-layered tissue and stainless steel needle was adopted to analyze the thermal distribution in living tissue with a bioheat transfer analysis. The governing equation for the analysis was a Pennes' bioheat equation. A heat source characteristic of warm needling therapy was obtained by previous experimental measurements. The first analysis of the time-dependent temperature distribution was conducted through points on a boundary between the needle and the tissue. The second analysis was conducted to visualize the horizontal temperature distribution. Results When heat source's peak temperatures was above $500^{\circ}C$ and temperature rising rates were relatively slow, the peak temperature at skin surface exceeded a threshold of pain and tissue damage ($45^{\circ}C$), whereas when the peak temperature was around $400^{\circ}C$, the peak temperature at the skin surface was within a safe limit. In addition, the conduction of combustion energy from the moxa was limited to the skin layer around the needle. Conclusions The results suggest that the skin layer around the needle can be heated effectively by warm needling therapy, but it appears to have little effect at the deeper tissue. These findings enhance our understanding of the efficacy and the safety of the warm needling therapy.

Keywords

References

  1. World Health Organization. WHO International Standard Terminologies on Traditional Medicine in the Western Pacific Region. World Health Organization, Western Pacific Region; 2007:233.
  2. Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93-122.
  3. Wissler EH. Pennes' 1948 paper revisited. J Appl Physiol. 1998;85(1):35-41.
  4. Guy AW, Lehmann JF, Stonebridge JB. Therapeutic applications of electromagnetic power. Proc IEEE. 1974; 62(1):55-75. https://doi.org/10.1109/PROC.1974.9385
  5. Suwansin W, Phasukkit P, Pintavirooj C, Sanpanich A, editors. Analysis of heat transfer and specific absorption rate of electromagnetic field in human body at 915 MHz and 2.45 GHz with 3D finite element method. Biomedical Engineering International Conference (BMEiCON), 2012; 2012 5-7 Dec. 2012.
  6. Deng Z, Liu J. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics. Comput Biol Med. 2004; 34(6):495-521. https://doi.org/10.1016/S0010-4825(03)00086-6
  7. Dai W, Wang H, Jordan PM, Mickens RE, Bejan A. A mathematical model for skin burn injury induced by radiation heating. Int J Heat Mass Trans. 2008;51(23-24):5497-510. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.006
  8. 박영배, 강성길, 고형균, 오환섭. 애구의 연소 시간에 대한 실험적 연구 -구간별 발현 시점을 중심으로-. 대한한의학회지. 1994;15(2):241-52.
  9. 김윤홍, 이승호, 여수정, 최일환, 김영곤, 임사비나. 온침의 표준화를 위한 애주의 밀도에 따른 온도 측정 연구. 대한한의학회지. 2008;29(3):11-20.
  10. 김정우, 이혜정, 이승호. 온침 열특성의 기류 영향에 관한 연구. 경락경혈학회지. 2010;27(4):35-47.
  11. 안성훈, 홍덕, 권오상, 김유리, 김재효, 손인철. 애주 무게별 온침의 침체간부 온도 변화 특성 연구. 경락경혈학회지. 2010;27(2):71-8.
  12. 천영실, 김용석, 이재동, 최도영, 박영배, 고형균, 안병철, 박동석, 강성길, 김창환, 이윤호. 쑥뜸이 한천피부모형에 미치는 연소특성의 연구. 대한침구학회지. 1999;16(3):155-77.
  13. Jang J. A comparative study for changes of temperature qualities in the high frequency warm needling: Wonkwang University; 2009.
  14. Sugata R, Tohya K, Ohnishi M, Kuroiwa K, Toda S, Kimura M. A study on temperature-changes in vivo with moxibustions. Jpn Soc Acup Moxi. 1988;38(3):326-9.
  15. Sugata R, Tohya K, Ohnishi M, Toda S, Kuroiwa K, Kimura M. A study on temperature-changes in vivo with moxibustions (part 2). Jpn Soc Acup Moxi. 1989;39(2): 241-5.
  16. 박영배, 강성길, 김창환, 고형균, 오환섭, 허웅. 재료에 따른 뜸의 연소 특성에 대한 연구. 대한한의학회지. 1996;17(1):222-33.
  17. 박영배, 강성길, 김갑성, 안창범, 오환섭, 허웅. 애구의 연소 특성에 관한 실험적 연구 (1) - 연소온도의 유형을 중심으로 -. 대한한의학회지. 1993;25(1):169-78.
  18. 방도향, 박영배, 강성길. 애구의 구간별 연소 시간에 관한 실험적 연구. 대한침구학회지. 1995;12(1):243-51.
  19. 홍덕, 권오상, 김영진, 김유리, 김재효, 안성훈, 손인철. 애주 연소 과정에서 발생하는 애주의 표면 및 중심부의 온도 변화 특성 연구. 경락경혈학회지. 2010;27(3):47-56.
  20. Zolfaghari A, Maerefat M. Bioheat transfer, Developments in heat transfer. Dr. Marco Aurelio Dos Santos Bernardes, editor: InTech; 2011:156.
  21. Fiala D, Lomas KJ, Stohrer M. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol. 1999; 87(5):1957-72.
  22. Kraff O, Wrede KH, Schoemberg T, Dammann P, Noureddine Y, Orzada S, Ladd ME, Bitz AK. MR safety assessment of potential RF heating from cranial fixation plates at 7 T. Med Phys. 2013;40(4):042302. https://doi.org/10.1118/1.4795347
  23. Miaskowski A, Sawicki B. Magnetic Fluid Hyperthermia Modeling Based on Phantom Measurements and Realistic Breast Model. IEEE Trans Biomed Eng. 2013;60(7): 1806-13. https://doi.org/10.1109/TBME.2013.2242071
  24. Murbach M, Neufeld E, Capstick M, Kainz W, Brunner DO, Samaras T, Pruessmann KP, Kuster N. Thermal Tissue Damage Model Analyzed for Different Whole-Body SAR and Scan Durations for Standard MR Body Coils. Magn Reson Med. 2014;71(1):421-31. https://doi.org/10.1002/mrm.24671
  25. Rodrigues DB, Maccarini PF, Louie S, Colebeck E, Topsakal E, Pereira PJS, Limao-Vieira P, Stauffer PR, editors. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism. Proc SPIE. 2013 Feb 26;8584.
  26. Zorbas G, Samaras T. Parametric study of radiofrequency ablation in the clinical practice with the use of two-compartment numerical models. Electromagn Biol Med. 2013;32(2):236-43. https://doi.org/10.3109/15368378.2013.776435
  27. Hasgall PA, Neufeld E, Gosselin MC, Klingenbock A, Kuster N, "IT'IS Database for thermal and electromagnetic parameters of biological tissues," Version 2.4, July 30th, 2013. www.itis.ethz.ch/database.
  28. Miettinen J. Calculation of solidification-related thermophysical properties for steels. Metall and Materi Trans B. 1997;28(2):281-97. https://doi.org/10.1007/s11663-997-0095-2
  29. 정지현. 온침소재의 열전달특성에 관한 연구 [석사학위논문]. 서울: 경희대학교; 2008.
  30. Pichard CR, Ouarbya L, Bouhala Z, Tosser AJ. General expressions for the Wiedemann-Franz law in metallic layers. J Mater Sci Lett. 1984;3(8):725-7. https://doi.org/10.1007/BF00719933
  31. Yamasue E, Susa M, Fukuyama H, Nagata K. Deviation from Wiedemann-Franz Law for the Thermal Conductivity of Liquid Tin and Lead at Elevated Temperature. Int J Thermophys. 2003;24(3):713-30. https://doi.org/10.1023/A:1024088232730
  32. Min WK, Yeo S, Kim E-H, Song HS, Koo S, Lee JD, Lim S. Comparision of warm-needling and acupuncture for knee osteoarthritis: A randomized controlled trial. Korean J Acupunct. 2013;30(1):64-72. https://doi.org/10.14406/acu.2013.30.1.064
  33. 장효길, 허동석. 전열침이 급만성 족관절 염좌로 인한 전거비 인대 손상에 미치는 임상적 효과. 한방재활의학과학회지. 2011;21(4):181-90.
  34. 안순선, 허동석. 전열침이 급성 족관절 염좌로 인한 전기비, 종비 인대 손상에 미치는 임상적 효과. 한방재활의학과학회지. 2010;20(3):119-29.
  35. 장선정, 장효길, 허동석. 전열침과 침의 병행치료가 발목 염좌로 인한 외측인대 2도 손상에 미치는 임상적 효과. 한방재활의학과학회지. 2011;21(4):191-203.
  36. Lee Y, Hwang K. Skin thickness of Korean adults. Surg Radiol Anat. 2002;24(3-4):183-9. https://doi.org/10.1007/s00276-002-0034-5
  37. Maruyama Y, Iizuka S, Yoshida K. Ultrasonic observation on distribution of subcutaneous fat in Japanese young adults with reference to sexual difference. Ann Physiol Anthropol. 1991;10(1):61-70. https://doi.org/10.2114/ahs1983.10.61
  38. John O'Neill 저, 이정찬, 방인걸, 이광재, 한범기 역. 핵심 근골격계 초음파. 서울: 한솔의학서적; 2011:262.
  39. Lee RC, Russo G, Kicska G. Kinetics of Heating in Electrical Shock. Ann NY Acad Sci. 1994;720(1):56-64. https://doi.org/10.1111/j.1749-6632.1994.tb30434.x
  40. Schramm W, Yang D, Wood BJ, Rattay F, Haemmerich D. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Open Biomed Eng J. 2007;1:47-52. https://doi.org/10.2174/1874120700701010047
  41. Cosman ER, Jr., Cosman ER, Sr. Electric and thermal field effects in tissue around radiofrequency electrodes. Pain Med. 2005;6(6):405-24. https://doi.org/10.1111/j.1526-4637.2005.00076.x
  42. Jiang SC, Ma N, Li HJ, Zhang XX. Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns. 2002;28(8):713-7. https://doi.org/10.1016/S0305-4179(02)00104-3
  43. Giombini A, Giovannini V, Cesare AD, Pacetti P, Ichinoseki-Sekine N, Shiraishi M, Naito H, Maffulli N. Hyperthermia induced by microwave diathermy in the management of muscle and tendon injuries. Br Med Bull. 2007;83(1):379-96. https://doi.org/10.1093/bmb/ldm020
  44. 장효길, 안순선, 허동석, 홍권의. 전열침이 장요인대 염좌로 인한 요통에 미치는 임상적 효과. 한방재활의학과학회지. 2010;20(3):109-17.
  45. 김정우, 이혜정, 안창범, 이승호. 온침의 열특성과 온침기기 개발에 관한 연구. 대한침구학회지. 2011;28(1):15-28.