DOI QR코드

DOI QR Code

Trellis Encoding of 6/8 Balanced Code for Holographic Data Storage Systems

홀로그래픽 저장장치를 위한 2차원 6/8 균형부호의 트렐리스 인코딩

  • Kim, Byungsun (Soongsil University, School of Electronic Engineering) ;
  • Lee, Jaejin (Soongsil University, School of Electronic Engineering)
  • Received : 2014.09.25
  • Accepted : 2014.10.01
  • Published : 2014.10.31

Abstract

Holographic data storage is a strong contender to become the next-generation data storage method. Its major weaknesses are two-dimensional intersymbol interference between neighboring pixels and interpage interference caused by storing multiple pages in a single volume of hologram. In this paper, we present a trellis encoding scheme of 6/8 balanced modulation code, to address the two weaknesses. The proposed modulation coding scheme captures on characteristics of the balanced code: the scheme relaxes IPI and enables error correction by exploiting the trellis structure. The proposed method showed improved SNR over the conventional 6/8 modulation code.

차세대 저장장치로 부각되고 있는 홀로그래픽 데이터 저장장치는 인접한 픽셀들 간의 이차원 인접 심볼간 간섭과 하나의 홀로그램 볼륨에 여러 페이지가 저장되면서 생기는 인접 페이지간 간섭과 같은 문제점이 있다. 이러한 문제점들을 제거하기 위해 본 논문에서는 오류 정정이 가능한 2차원 6/8 균형부호를 이용한 트렐리스 인코딩 방법을 제안하였다. 제안된 변조 부호는 균형부호의 특징을 사용하여 IPI를 완화시키며 트렐리스 구조의 부호화를 통하여 에러 정정이 가능하게 하였다. 제안된 코드는 SNR이 높아짐에 따라 일반적인 6/8 균형부호보다 더 좋은 성능을 보였다.

Keywords

References

  1. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Gunter, R. M. Macfalane, and G. T. Sincerbox, "Pixel matched holographic data storage with megabit pages," Opt. Lett., vol. 22, no. 19, pp. 1509-1511, 1997. https://doi.org/10.1364/OL.22.001509
  2. D. Psaltis, A. Pu, M. Levene, K. Curtis, and G. Barbastathis, "Holographic storage using shift multiplexing," Opt. Lett., vol. 20, no. 7, pp. 782-784, 1995. https://doi.org/10.1364/OL.20.000782
  3. L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," in Proc. IEEE, vol. 92, no. 8, pp. 1231-1280, 2004.
  4. V. Vadde and B. V. K. V. Kumar, "Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage," Appl. Opt., vol. 38, no. 20, pp. 4374-4386, 1999. https://doi.org/10.1364/AO.38.004374
  5. M. Keskinoz and B. V. K. V. Kumar, "Efficient modeling of volume holographic storage channels (VHSC)," in Proc. SPIE, vol. 4090, pp. 205-210, 2000.
  6. D. E. Pansatiankul and A. A. Sawchuk, "Multi-dimensional modulation codes and error correction for page-oriented optical data storage," in Proc. SPIE, vol. 4342, pp. 393-400, Jan. 2002.
  7. J. Kim and J. Lee, "Two-dimensional non-isolated pixel modulation code for holographic data storage," J. KICS, vol. 34, no. 2, pp. 163-168. Feb. 2009.
  8. J. Kim and J. Lee, "Performance of two-dimensional soft output Viterbi algorithm for holographic data storage," J. KICS, vol. 37, no. 10, pp. 815-820. Oct. 2012 https://doi.org/10.7840/kics.2012.37A.10.815
  9. G. Kim and J. Lee, "2/3 modulation code and its Viterbi decoder for 4-level holographic data storage," J. KICS, vol. 38, no. 10, pp. 827-832, Oct. 2013.
  10. G. Yang, J. Kim, and J. Lee, "Mis-alignment channel performance of error correcting 4/6 modulation code for holographic data storage," J. KICS, vol. 35, no. 12, pp. 971-976. Dec. 2010.
  11. G. W. Burr, J. Ashley, H. Coufal, O. K. Greygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, "Modulation coding for pixel-matched holographic data storage," Opt. Lett., vol. 22, no. 9, pp. 639-641, 1997. https://doi.org/10.1364/OL.22.000639