DOI QR코드

DOI QR Code

임의반사율의 부분중복파동장에서 유한두께를 갖는 해저지반 내 지반응답의 해석법

Analytical Method of Partial Standing Wave-Induced Seabed Response in Finite Soil Thickness under Arbitrary Reflection

  • 이광호 (가톨릭관동대학교 에너지자원플랜트공학과) ;
  • 김도삼 (한국해양대학교 건설공학과) ;
  • 김규한 (가톨릭관동대학교 토목공학과) ;
  • 김동욱 (한국해양대학교 해사산업대학원 토목환경공학과) ;
  • 신범식 (가톨릭관동대학교 첨단해양공간개발연구센터)
  • Lee, Kwang-Ho (Dept. of Energy Resources and Plant Engng., Catholic Kwandong Univ.) ;
  • Kim, Do-Sam (Dept. of Civil Engng., Korea Maritime and Ocean Univ.) ;
  • Kim, Kyu-Han (Dept. of Civil Engng., Catholic Kwandong Univ.) ;
  • Kim, Dong-Wook (Dept. of Civil and Environmental Engng., Korea Maritime and Ocean Univ.) ;
  • Shin, Bum-Shick (Waterfront & Coastal Research Center, Catholic Kwandong Univ.)
  • 투고 : 2014.10.14
  • 심사 : 2014.10.27
  • 발행 : 2014.10.31

초록

파-지반의 상호작용 해석에 지금까지는 대부분 무한두께를 갖는 해저지반 상의 진행파와 무한두께 혹은 유한두께의 해저지반 상에서 완전중복파에 대해서만 해석해가 제안되어 있다. 본 연구에서는 임의반사율의 부분중복파동장에 선형파 이론과 유한두께를 갖는 해저지반에 Biot(1941) 3차원 압밀이론 및 지반탄성론에 기초한 유효응력 개념을 각각 적용하여 지반 내 동적응답에 관한 해석해를 새롭게 유도하며, 이에 수심과 반사율만을 변화시킴으로서 기존의 해석해가 간단히 얻어지기 때문에 그의 적용성이 보다 넓다. 본 해석해의 타당성은 무한지반 상의 진행파동장 및 완전중복파동장에 대한 Yamamoto et al.(1978) 및 Tsai & Lee(1994)의 해석해와 비교 검토로부터 검증된다. 또한, 본문에서는 유한깊이를 갖는 해저지반 상의 진행파동장, 완전중복파동장 및 임의반사율의 부분중복파동장에 대해 수심과 주기의 변화에 따른 본 해석해의 변화특성을 면밀히 검토한다. 이로부터 유한깊이의 지반은 무한두께의 경우와는 매우 상이한 지반응답(간극수압, 전단응력, 수평 및 연직 유효응력)을 나타내고, 반사율의 함수인 부분중복파동장에서 지반응답은 완전중복파동장에서의 값보다 일반적으로 작은 값을 나타낸다는 것을 확인할 수 있었다.

Most analytical solutions for wave-induced soil response have been mainly developed to investigate the influence of the progressive and standing waves on the seabed response in an infinite seabed. This paper presents a new analytical solution to the governing equations considering the wave-induced soil response for the partial standing wave fields with arbitrary reflectivity in a porous seabed of finite thickness, using the effective stress based on Biot's theory (Biot, 1941) and elastic foundation coupled with linear wave theory. The newly developed solution for wave-seabed interaction in seabed of finite depth has wide applicability as an analytical solutions because it can be easily extended to the previous analytical solutions by varying water depth and reflection ratio. For more realistic wave field, the partial standing waves caused by the breakwaters with arbitrary reflectivity are considered. The analytical solutions was verified by comparing with the previous results for a seabed of infinite thickness under the two-dimensional progressive and standing wave fields derived by Yamamoto et al.(1978) and Tsai & Lee(1994). Based on the analytical solutions derived in this study, the influence of water depth and wave period on the characteristics of the seabed response for the progressive, standing and partial standing wave fields in a seabed of finite thickness were carefully examined. The analytical solution shows that the soil response (including pore pressure, shear stress, horizontal and vertical effective stresses) for a seabed of finite thickness is quite different in an infinite seabed. In particular, this study also found that the wave-induced seabed response under the partial wave conditions was reduced compared with the standing wave fields, and depends on the reflection coefficient.

키워드

참고문헌

  1. Biot, M.A.(1941). General theory of three-dimensional consolidation, J. Applied Physics, 12, pp.155-164. https://doi.org/10.1063/1.1712886
  2. Hsu, J.R.C., Jeng, D.S. and Tsai, C.P.(1993). Short-crested wave induced soil response in a porous seabed of infinite thickness, Int. J. Numer. Analytical Methods Geomech., 17, 553-576. https://doi.org/10.1002/nag.1610170803
  3. Jeng, D.S.(1997). Wave-induced seabed instability in front of a breakwater, Ocean Engng., 24(10), 887-917. https://doi.org/10.1016/S0029-8018(96)00046-7
  4. Jeng, D.S. and Hsu, J.R.C.(1996). Wave-induced soil response in a nearly saturated sea-bed of finite thickness, Geotechnique, 46(3), 427-440. https://doi.org/10.1680/geot.1996.46.3.427
  5. Jeng, D.S. and Rahman, M.S.(2000). Effective stresses in a porous seabed of finite thickness : inertia effects, Can. Geotech. J., 37, 1383-1392. https://doi.org/10.1139/t00-063
  6. McDougal, W.G., Tsai, Y.T., Liu, P.L.F. and Clukey, E.C.(1989). Wave-induced pore water pressure accumulation in marine soils, J. Offshore Mech. an Arctic Engng., ASME, 111(1), 1-11. https://doi.org/10.1115/1.3257133
  7. Liu, P.L.F.(1973). Damping of water waves over porous bed, J. Hydaul. Div., ASCE, 99(HY12), 2263-2271.
  8. Madsen, O.S.(1978). Wave-induced poro pressure and effective stresses in a porous bed, Geotechnique, 28(4), 377-393. https://doi.org/10.1680/geot.1978.28.4.377
  9. Maeno, Y.H. and Hasegawa, T.(1987). In-situ measurements of wave-induced pore pressure for predicting properties of seabed deposits, Coastal Engng. Japan, 30(1), 99-115.
  10. Massel, S.R.(1976). Gravity waves propagated over permeable bottom, J. Watways Harb. and Coastal Engng, ASCE, 102(WW2), 111-121.
  11. Moshagen, H. and Torum, A.(1975). Wave-induced pressures in permeable sea bed, J. Watways Harb. and Coastal Engng, ASCE, 101(WW1), 1252-1273.
  12. Nakamura, M.(1973). On the seepage in the seabed due to waves, Proc. 20th Coastal Engng. Conf., JSCE, 421-428.
  13. Okusa, S.(1985). Measurements of wave-induced pore pressure in submarine sediments under verious marine conditions, Mar. Geotechl., 6(2), 119-144. https://doi.org/10.1080/10641198509388184
  14. Prevost, J.H., Andersen, K.H. and Eide, O.(1975). Discussion of "Wave induced pressures in permeable seabeds", J. Watways Harb. and Coastal Engng, ASCE, 101(4), 464-465.
  15. Putnam, J.A.(1949). Loss wave energy due to percolation in a permeable sea bottom, Eos, Trans. Am. Geopyhs. Un., 30, Issue 3, 349-356. https://doi.org/10.1029/TR030i003p00349
  16. Sleath, J.F.A.(1970). Wave-induced pressures in beds of sand, J. Hydaul. Div., ASCE, 96(HY2), 367-378.
  17. Tsai, C.P.(1995). Wave induced liquefaction potential in a porous seabed in front of a breakwater, Ocean Engng., 22, 1-18. https://doi.org/10.1016/0029-8018(94)00042-5
  18. Tsai, C.P. and Lee, T.L.(1994). Standing wave induced pore pressures in a porous seabed, Ocean Engng., 22(6), 505-517.
  19. Tsui, Y.T. and Helfrich, S.C.(1983). Wave induced pore pressures in submerged sand layer, J. Geotech. Engng. Div., ASCE, 109(4), 603-618. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:4(603)
  20. Verruit, A.(1969). Elastic storage of aquifers, Flow through porous media, Academic Press, New York.
  21. Yamamoto, T., Koning, H.L., Sellmeijer, H. and Hijum, E.V.(1978). On the response of a poro-elastic bed to water waves, J. Fluid Mech., 87, Part 1, 193-206.
  22. Zen, K. and Yamazaki, H.(1990). Mechanism of wave-induced liquefaction and densification in seabed, Soil and Foundation, 31(4) 161-179.

피인용 문헌

  1. An Analytical Solution of Flow and Progressive Wave-Induced Residual Pore Water Pressure in Seabed vol.31, pp.7, 2015, https://doi.org/10.7843/kgs.2015.31.7.13
  2. An Analytical Solution of Dynamic Responses for Seabed under Flow and Standing Wave Coexisting Fields vol.27, pp.2, 2015, https://doi.org/10.9765/KSCOE.2015.27.2.118
  3. An Analytical Solution of Dynamic Responses for Seabed under Coexisting Fields of Flow and Partial Standing Wave with Arbitrary Reflection Ratio vol.31, pp.6, 2015, https://doi.org/10.7843/kgs.2015.31.6.27
  4. An Analytical Solution of Progressive Wave-Induced Residual Pore-Water Pressure in Seabed vol.27, pp.3, 2015, https://doi.org/10.9765/KSCOE.2015.27.3.159
  5. An Analytical Study on Generation of Pore-Water Pressures Induced by Flow and Waves in Seabed, and Resulting Liquefaction vol.27, pp.5, 2015, https://doi.org/10.9765/KSCOE.2015.27.5.324