DOI QR코드

DOI QR Code

Effects of Disinfectant Concentration, pH, Temperature, Ammonia, and Suspended Solids on the Chlorine Disinfection of Combined Sewer Overflow

소독제 농도, pH, 온도, 암모니아 농도, 부유물질이 강우 월류수 염소 소독에 미치는 영향

  • Received : 2014.10.01
  • Accepted : 2014.10.29
  • Published : 2014.10.30

Abstract

The treatment of combined sewer overflow (CSO) is one of potential concerns in domestic wastewater treatment in Korea due to the pre-announce of CSO regulations. This work investigated the effects of disinfectant (NaOCl) concentration (0.11 to 4.0 mg $Cl_2/L$), pH (6.5 to 8.0), temperature (15 to $25^{\circ}C$), ammonia (10 to 41 mg N/L), and suspended solids (91 to 271 mg SS/L) on the chlorine disinfection of CSO. The effect of NaOCl concentration on the pseudo-$1^{st}$ order reaction rate for total coliform inactivation was described well with a saturation-type model with the half-velocity constant of 1.212 mg/L. The total coliform inactivation reaction rate decreased with SS and pH, and increased with temperature. Ammonia in the examined range did not affect the disinfection kinetics. A chlorine contact tank with the injection chlorine level of 1 mg $Cl_2/L$ and the hydraulic retention time of 1.25 min is estimated to reduce total coliform from $1{\times}10^5MPN/mL$ to 1,000 MPN/mL at 271 mg SS/L, $15^{\circ}C$, and pH 8.0. Chlorine would be a proper option for the disinfection of CSO.

하수처리시설 초과유량에 대한 처리 규제 입법 예고로 인해 강우 월류수 처리에 대한 관심이 증가하고 있다. 본 연구에서는 강우 월류수 염소(차아염소산나트륨) 소독 시 소독제 농도(0.11-4.0 mg $Cl_2/L$), pH (6.5-8.0), 온도($15-25^{\circ}C$), 암모니아 농도(10-41 mg N/L), 부유물질(91-271 mg SS/L)이 대장균군수 감소 속도에 미치는 영향을 고찰하였다. 차아염소산나트륨 농도 효과는 반속도 상수가 1.212mg $Cl_2/L$인 saturation-type model로 잘 모사되었다. 소독 반응 속도는 SS와 pH 증가에 따라 감소되는 반면, 온도에 따라서는 증가하였고, 암모니아 농도에는 영향을 받지 않았다. 월류수 유입 조건을 $1{\times}10^5MPN/mL$, 271 mg SS/L, $15^{\circ}C$, pH 8.0로 가정할 때, 염소 주입 농도 1 mg/L, 수리학적 체류시간 1.25 분인 염소 소독조를 통해 입법예고 된 수질 기준의 1/3 수준인 대장균군수 1,000개/mL를 달성할 수 있을 것으로 계산되어, 염소 소독이 강우 월류수 소독에 유효하게 사용될 수 있을 것으로 판단된다.

Keywords

References

  1. Ministry of Environment, Korea, Regulatory Strategy for first flush(2011).
  2. Lee, D. I., "Integrated management of urban sewer system under wet-weather conditions, Ph. D dissertation," Hanyang University(2003).
  3. Ministry of Environment, Korea, Improvement of combined sewer overflows, 20140217(2014).
  4. Brezonik, P. L. and Stadelmann, T. H., "Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA," Water Res., 36, 1743-1757(2002). https://doi.org/10.1016/S0043-1354(01)00375-X
  5. U. S. EPA, Combined sewer overflow technology fact sheetchlorine disinfection. EPA 832-F-99-034(1999).
  6. Kothandaraman, V., "Water quality characteristics of storm sewer discharges and combined sawer overflows," Circular, p. 109(1972).
  7. U. S. EPA, Microstraining and Disinfection of Combined Sewer Overflows-Phase II. EPA R2-73-124(1973).
  8. Lee, J. H. and Bang, K. W., "Characterization of urban stormwater runoff," Water Res., 34(6), 1773-1780(2000). https://doi.org/10.1016/S0043-1354(99)00325-5
  9. Kim, K. L., "A study on the development of sewage treatment plant optimal management model by inflow increase during rainfall," Master's thesis, University of Seoul(2008).
  10. Li, T., Tan, O. and Zhu, S., "Characteristics of combined sewer overflows in Shanghai and selection of drainage systems," Water Environ. J., 24, 74-82(2010). https://doi.org/10.1111/j.1747-6593.2008.00141.x
  11. Metcalf & Edddy, Inc., Wastewater Engineering(2004).
  12. Wilkinson, D. H., Armstrong, D. J. and Blevins, D. W., Effects of wastewater and combined sewer overflows on water quality in the Blue River Basin, Kansas City, Missouri and Kansas, July 1998-October 2000, US Geol. Survey Water Res. Invest. Rept. 02-4107, p. 162(2002).