DOI QR코드

DOI QR Code

The Study on the Improvement of Piezoelectric and Electrical Characteristics of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics Modified by the La-based ABO3 Pervskite Structure

La 기반의 ABO3 구조를 갖는 첨가물에 따른 Bi0.5(Na0.78K0.22)0.5TiO3의 압전 및 전기적인 특성 향상 연구

  • Lee, Ku Tak (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Jung Soo (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji Sun (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong Ho (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young Hun (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong Hoo (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology)
  • 이규탁 (한국세라믹기술원 전자소재융합본부) ;
  • 박정수 (한국세라믹기술원 전자소재융합본부) ;
  • 윤지선 (한국세라믹기술원 전자소재융합본부) ;
  • 조정호 (한국세라믹기술원 전자소재융합본부) ;
  • 정영훈 (한국세라믹기술원 전자소재융합본부) ;
  • 백종후 (한국세라믹기술원 전자소재융합본부)
  • Received : 2014.09.01
  • Accepted : 2014.10.24
  • Published : 2014.11.01

Abstract

The $0.99Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3-0.01LaAlO_3$, $0.01LaMnO_3$ or $0.01LaFeO_3$ (0.99BNKT-0.01LA, 0.01LM or 0.01LF) ceramics were prepared by a conventional mixed mothod. The structure and morphology of the lead free ceramics were characterized by XRD (X-ray diffraction) and FE-SEM (field emission scanning electron microscopy). XRD results indicated that the BNKT ceramics modified by LA, LM or LF induced a transition from a ferroelectric tetragonal to a non-polar pseudo-cubic phase, leading to decrease in the remnant polarization ($P_r$) and coercive field ($E_c$) in the P-E hysterisis loops. The effects of the BNKT ceramics modified by La-based $ABO_3$ pervskite structure on the electric-field induced strain were investigated, and the largest normalized unipolar strain ($S_{max}/E_{max}$) was found in BNKT-0.01LF ceramic.

Keywords

References

  1. Y. S. Kim, J. C. Kim, T. H. Jeong, S. P. Nam, S. H. Lee, H. K. Kim, and K. T. Lee, Trans. Electr. Electron. Mater., 15, 100 (2014). https://doi.org/10.4313/TEEM.2014.15.2.100
  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  3. H. Gong, X. Wang, S. Zhang, H. Wen, and L. Li, J. Eur. Ceram. Soc., 34, 1733 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.028
  4. B. Wang, L. Luo, F. Ni, P. Du, W. Pi, and H. Chen, J. Alloys. Compd., 526, 79 (2012). https://doi.org/10.1016/j.jallcom.2012.02.114
  5. R. Sumang, N. Vittayakorn, and T. Bongkarn, Ceram. Int., 39, S409 (2013). https://doi.org/10.1016/j.ceramint.2012.10.104
  6. A. Hussain, C. W. Ahn, A. Ullah, J. S. Lee, and I. W. Kim, Ceram. Int., 38, 4143 (2012). https://doi.org/10.1016/j.ceramint.2012.01.074
  7. J. Rodel, W. Jo, Klaus T. P. Seifert, E. M. Anton, and T. Granzow, J. Am. Ceram. Soc., 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  8. Y. Zhang, A. L. Ding, P. S. Qiu, X. Y. He, X. S. Zheng, H. R. Zeng, and Q. R. Yin, Mater. Sci. Eng. B, 99, 360 (2003). https://doi.org/10.1016/S0921-5107(02)00499-3
  9. K. N. Pham, T. H. Dinh, H. Y. Lee, Y. M. Kong, and J. S. Lee, J. Kor. Ceram. Soc., 49, 266 (2012). https://doi.org/10.4191/kcers.2012.49.3.266
  10. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, Jpn. J. Appl. Phys., 49, 041054 (2010).
  11. M. Zou, H. Fan, L. Chen, and W. Yang, J. Alloys. Compd., 495, 280 (2010). https://doi.org/10.1016/j.jallcom.2010.02.025
  12. N. B. Do, H. B. Lee, C. H. Yoon, J. K. Kang, I. W. Kim, and J. S. Lee, Trans. Electr. Electron. Mater., 12, 64 (2011). https://doi.org/10.4313/TEEM.2011.12.2.64
  13. A. Maqbool, A. Hussain, J. U. Rahman, T. K. Song, W. J. Kim, J. Lee, and M. H. Kim, Ceram. Int., 40, 11905 (2014). https://doi.org/10.1016/j.ceramint.2014.04.026