DOI QR코드

DOI QR Code

Reduced Degree of Freedom Modeling for Progressive Collapse Analysis of Tall Buildings using Applied Element Method

응용 요소법을 이용한 초고층 건물의 축소 모델링 연쇄붕괴 해석

  • Kim, Han-Soo (Dept. of Architectural Engineering, Konkuk University) ;
  • Wee, Hae-Hwan (Dept. of Architectural Engineering, Konkuk University)
  • 김한수 (건국대학교 건축공학과) ;
  • 위해환 (건국대학교 건축공학과)
  • Received : 2014.04.21
  • Accepted : 2014.08.01
  • Published : 2014.10.31

Abstract

Since progressive collapse of tall buildings can cause enormous damage, it should be considered during the design phase of tall buildings. The progressive collapse analysis of tall buildings using finite element methods is almost impossible due to the vast amount of computing time. In this paper, applied element method was evaluated as an alternative to the finite element method. Reduced DOFs modeling technique was proposed to enable the progressive collapse analysis of tall buildings. The reduced DOFs model include only the part which is subjected to direct damage from blast load and the structural properties such as mass, transferred load and stiffness of excluded parts are accumulated into the top story of the reduced DOFs model. The proposed modeling technique was applied to the progressive collapse analysis of 20-story RC building using three collapse scenarios. The reduced DOFs model showed similar collapse behavior to the whole model while the computing time was reduced by 30%. The proposed modeling technique can be utilized in the progressive collapse analysis of tall buildings due to abnormal loads.

초고층 건물의 연쇄붕괴는 큰 피해를 발생시키므로 초고층 건물의 설계 단계에서 반드시 고려해야할 사항이다. 유한요소법을 이용한 초고층 건물의 연쇄붕괴 해석은 해석 시간이 지나치게 많이 소요되어 사실상 불가능하다고 할 수 있다. 본 논문에서는 유한 요소법의 대안으로 응용 요소법을 이용한 연쇄붕괴 해석의 유용성을 살펴보았다. 초고층 건물의 연쇄붕괴 해석을 위하여 규모 축소 모델링 방안을 제안하였다. 제안한 규모 축소 모델링 방안은 폭파하중의 직접적인 피해를 받는 부분만 해석모델에 포함하고 제외되는 나머지 부분의 질량과 전달하중 그리고 강성은 하나의 층에 집중시키는 방법이다. 20층 고층 철근콘크리트 건물에 대한 전체 모델과 축소된 모델을 세 가지 연쇄붕괴 시나리오에 대하여 연쇄붕괴 해석을 수행하고 그 결과를 비교하였다. 축소 모델은 전체 모델과 유사한 연쇄붕괴 양상을 보여 주지만 소요된 시간은 전체 모델의 약30%로 줄일 수 있었다. 본 논문에서 제안된 연쇄붕괴 해석 방안은 비정상 하중에 의한 초고층 건물의 연쇄붕괴 해석에 유용하게 사용될 수 있다.

Keywords

References

  1. Nair, R. S., Progressive Collapse Basics, Proceedings of AISC-SIDNY Symposium on Blast and Progressive Collapse, AISC, 2003.
  2. ASI, ELS Theory Manual, Applied Element Overview, 2013, pp. 10-43.
  3. ASCE, The Oklahoma City Bombing, 1996, pp. 1-26.
  4. DoD, Design of Buildings to Resist Progressive Collapse, U.S Department of Defense, 2013, pp. 12-58
  5. GSA, Progressive Collapse Design Guidelines Applied to Concrete Moment-Resisting Frame Buildings, U.S. General Services Administration, 2004, pp. 4.1-4.17
  6. UFC, Design of Buildings to Resist Progressive Collapse, U.S Department of Defense, 2013, pp. 59-60
  7. The Oklahoma City Bombing : Summary and Recommendations for Multihazard Mitigation, Journal of Performance of Constructed Facilities, 1998, pp. 100-112.
  8. A How-To Guide to Mitigate Potential Terrorist Attackes Against Buildings, FEMA452, 2005, pp. 1-15.
  9. Blast Loading and Blast Effects on Structures, Electroinc Journal of Structural Engineering, 2007, pp. 76-91.
  10. The Required Lateral Load for Prevention of a Progressive Collapse in a Tall Buildings, Journal of the Architectural Institute of Korea, Vol. 26, No. 50, 2006, pp. 26-27.
  11. Aspects Concerning Progressive Collapse of a Reinforced Concrete Frame Structure with Infill Walls, Proceedings of the World Congress on Engineering, Vol. 3, 2011, pp. 6-8.
  12. ASCE, Structural Design for Physical Security: State of the Practice Report, Task Committee on Physical Security, American Society of Civil Engineers, 1999.
  13. Introduction to Structural Dynamics, 1973, pp. 3-26.
  14. Collapse Simulations of High-Rise RC Building Using ELS Software and Application of Explosive Demolition Methods to Transition Process Analysis from Local Damage to Progressive Collapse, Journal of Korean Society of Explosives & Blasting Engineering, Vol. 29, No. 2, 2011, pp. 1-12.
  15. Collapse Modeling of Model RC Structure Using Applied Element Method, Journal of Korean Society for Rock Mechanics, Vol. 19, No. 1, 2008, pp. 43-51.