DOI QR코드

DOI QR Code

시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식

Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models

  • 김혜숙 (경기대학교 컴퓨터과학과) ;
  • 김인철 (경기대학교 컴퓨터과학과)
  • 투고 : 2014.07.30
  • 심사 : 2014.09.12
  • 발행 : 2014.11.15

초록

본 논문에서는 Kinect와 같은 RGB-D 센서를 이용하여 사람의 3차원 신체 포즈 스트림 데이터를 생성하고, 이로부터 사람의 일상 행위를 효과적으로 인식하는 방법을 제안한다. Kinect SDK나 OpenNI에서 제공하는 실시간 신체 포즈 데이터는 Kinect 중심의 3차원 데카르트 좌표계로 표현되기 때문에, 시점 변화 문제와 크기 변화 문제를 겪을 가능성이 높다. 이러한 문제를 해결하고 시점 및 크기 불변인 특징을 얻기 위해, 본 논문에서는 신체 포즈 데이터를 실험자의 골반을 원점으로 하는 구면 좌표계로 변환하고 실험자의 팔 길이를 이용한 크기 정규화를 수행한다. 또한, 본 논문에서는 확률 그래프 모델 중 하나인 은닉 조건부 랜덤 필드를 이용하여, 고수준의 일상 행위들이 내포하는 다양한 내부 구조를 효과적으로 표현한다. 두 가지 데이터 집합 KAD-70과 CAD-60을 이용한 실험을 통해, 본 논문에서 제안한 행위 인식 방법과 구현 시스템의 높은 인식 성능을 확인하였다.

In this paper, we propose an effective method for recognizing daily human activities from a stream of three dimensional body poses, which can be obtained by using Kinect-like RGB-D sensors. The body pose data provided by Kinect SDK or OpenNI may suffer from both the view variance problem and the scale variance problem, since they are represented in the 3D Cartesian coordinate system, the origin of which is located on the center of Kinect. In order to resolve the problem and get the view-invariant and scale-invariant features, we transform the pose data into the spherical coordinate system of which the origin is placed on the center of the subject's hip, and then perform on them the scale normalization using the length of the subject's arm. In order to represent effectively complex internal structures of high-level daily activities, we utilize Hidden state Conditional Random Field (HCRF), which is one of probabilistic graphical models. Through various experiments using two different datasets, KAD-70 and CAD-60, we showed the high performance of our method and the implementation system.

키워드

참고문헌

  1. J. K. Aggarwal and M. S. Ryoo, "Human Activity Analysis : A Review," ACM Computing Surveys, Vol. 43, No. 3, 2011.
  2. R. Poppe, "A Survey on Vision-based Human Action Recognition," Image and Vision Computing, Vol. 28, pp. 976-990, 2010. https://doi.org/10.1016/j.imavis.2009.11.014
  3. A. Jalal, M. Z. Uddin, and T. S. Kim, "Depth Video based Human Activity Recognition System using Translation and Scaling Invariant Features for Life Logging at Smart Home," IEEE Transactions on Consumer Electronics, Vol. 58, No. 3, pp. 863-871, 2012. https://doi.org/10.1109/TCE.2012.6311329
  4. B. Ni, G. Wang, and P. Moulin, "RGBD-HuDaAct: A Color-Depth Video Database For Human Daily Activity Recognition," Proc. of the IEEE International Conference on Computer Vision (ICCV), 2011.
  5. M. Z. Uddin, N. D. Thang, J. T. Kim, and T. S. Kim, "Human Activity Recognition using Body Joint Angle Features and Hidden Markov Model," Journal of ETRI, Vol. 33, No. 4, pp. 569-579, 2011. https://doi.org/10.4218/etrij.11.0110.0314
  6. S. B. Wang, A. Quattoni, L. P. Morency, D. Demirdjian, and T. Darrell, "Hidden Conditional Random Field for Gesture Recognition," Proc. the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1521-1527, 2006.
  7. L. Piyathilaka and S. Kodagoda, "Gaussian Mixture based HMM for Human Daily Activity Recognition Using 3D Skeleton Features," Proc. of the IEEE International Conference on Industrial Electronics and Applications (ICIEA), pp. 567-572, 2013.
  8. C. Zhang and Y. Tian, "RGB-D Camera-based Daily Living Activity Recognition," Journal of Computer Vision and Image Processing, Vol. 2, No. 4, 2012.
  9. J. Sung, C. Ponce, B. Selman and A. Saxena, "Human Activity Detection from RGBD Images," Proc of the AAAI Workshop on Pattern, Activity and Intent Recognition, 2011.
  10. F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, "Sequence of the Most Informative Joints (SMIJ): A New Representation for Human Skeletal Action Recognition," Journal of Visual Communication and Image Representation, Vol. 25, No. 1, pp. 24-38, 2014. https://doi.org/10.1016/j.jvcir.2013.04.007
  11. L. Xia, C. C. Chen, and J. K. Aggarwal, "View Invariant Human Action Recognition Using Histograms of 3D Joints," Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20-27, 2012.
  12. K. Salim, B. Hafida, and R. Sid Ahmed, "Probabilistic Models for Local Patterns Analysis," Journal of Information Processing Systems, Vol. 10, No. 1, pp. 145-161, 2014. https://doi.org/10.3745/JIPS.2014.10.1.145
  13. D. Koller, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.
  14. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2007.
  15. http://pr.cs.cornell.edu/humanactivities/data.php