DOI QR코드

DOI QR Code

Foldback Intercoil DNA and the Mechanism of DNA Transposition

  • Received : 2014.07.17
  • Accepted : 2014.08.19
  • Published : 2014.09.30

Abstract

Foldback intercoil (FBI) DNA is formed by the folding back at one point of a non-helical parallel track of double-stranded DNA at as sharp as $180^{\circ}$ and the intertwining of two double helixes within each other's major groove to form an intercoil with a diameter of 2.2 nm. FBI DNA has been suggested to mediate intra-molecular homologous recombination of a deletion and inversion. Inter-molecular homologous recombination, known as site-specific insertion, on the other hand, is mediated by the direct perpendicular approach of the FBI DNA tip, as the attP site, onto the target DNA, as the attB site. Transposition of DNA transposons involves the pairing of terminal inverted repeats and 5-7-bp tandem target duplication. FBI DNA configuration effectively explains simple as well as replicative transposition, along with the involvement of an enhancer element. The majority of diverse retrotransposable elements that employ a target site duplication mechanism is also suggested to follow the FBI DNA-mediated perpendicular insertion of the paired intercoil ends by non-homologous end-joining, together with gap filling. A genome-wide perspective of transposable elements in light of FBI DNA is discussed.

Keywords

References

  1. McClintock B. The significance of responses of the genome to challenge. In: Nobel Lectures Physiology or Medicine 1981-1990 (Frangsmyr T, Lindsten J, eds.). Singapore: World Scientific Pub. Co., 1993. pp. 180-199.
  2. Watson JD, Crick FH. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953;171:737-738. https://doi.org/10.1038/171737a0
  3. Fedoroff N, Wessler S, Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell 1983;35:235-242. https://doi.org/10.1016/0092-8674(83)90226-X
  4. Craig NL, Craigie R, Gellert M, Lambowitz AM. Mobile DNA II. Washington, DC: ASM Press, 2002.
  5. Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science 2004;303:1626-1632. https://doi.org/10.1126/science.1089670
  6. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007;8:973-982. https://doi.org/10.1038/nrg2165
  7. Kim BD. Four-stranded DNA: an intermediate of homologous recombination and transposition. Korean J Breed 1985;17:453-466.
  8. Kim BD. The foldback intercoil DNA: its implication on DNA structures and functions. KAST Rev Mod Sci Technol 2007;3:65-79.
  9. Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 2007;8:241-259. https://doi.org/10.1146/annurev.genom.8.080706.092416
  10. Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007;23:183-191. https://doi.org/10.1016/j.tig.2007.02.006
  11. Kim YJ, Lee J, Han K. Transposable elements: no more 'Junk DNA'. Genomics Inform 2012;10:226-233. https://doi.org/10.5808/GI.2012.10.4.226
  12. Lee SI, Kim NS. Transposable elements and genome size variations in plants. Genomics Inform 2014;12:87-97. https://doi.org/10.5808/GI.2014.12.3.87
  13. Steiniger-White M, Rayment I, Reznikoff WS. Structure/function insights into Tn5 transposition. Curr Opin Struct Biol 2004;14:50-57. https://doi.org/10.1016/j.sbi.2004.01.008
  14. Bainton R, Gamas P, Craig NL. Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 1991;65:805-816. https://doi.org/10.1016/0092-8674(91)90388-F
  15. Haniford DB, Chelouche AR, Kleckner N. A specific class of IS10 transposase mutants are blocked for target site interactions and promote formation of an excised transposon fragment. Cell 1989;59:385-394. https://doi.org/10.1016/0092-8674(89)90299-7
  16. Shapiro JA. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci U S A 1979;76:1933-1937. https://doi.org/10.1073/pnas.76.4.1933
  17. Johnson RC, Reznikoff WS. DNA sequences at the ends of transposon Tn5 required for transposition. Nature 1983;304: 280-282. https://doi.org/10.1038/304280a0
  18. Parks AR, Li Z, Shi Q, Owens RM, Jin MM, Peters JE. Transposition into replicating DNA occurs through interaction with the processivity factor. Cell 2009;138:685-695. https://doi.org/10.1016/j.cell.2009.06.011
  19. Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 2009;138:1096-1108. https://doi.org/10.1016/j.cell.2009.07.012
  20. Mizuuchi K. Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem 1992;61:1011-1051. https://doi.org/10.1146/annurev.bi.61.070192.005051
  21. Craigie R, Mizuuchi K. Mechanism of transposition of bacteriophage Mu: structure of a transposition intermediate. Cell 1985;41:867-876. https://doi.org/10.1016/S0092-8674(85)80067-2
  22. Craig NL. Unity in transposition reactions. Science 1995;270:253-254. https://doi.org/10.1126/science.270.5234.253
  23. Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 2003;15:1771-1780. https://doi.org/10.1105/tpc.012559
  24. Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 1993;72:595-605. https://doi.org/10.1016/0092-8674(93)90078-5
  25. Kulpa DA, Moran JV. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 2006;13:655-660. https://doi.org/10.1038/nsmb1107
  26. Grindley ND, Reed RR. Transpositional recombination in prokaryotes. Annu Rev Biochem 1985;54:863-896. https://doi.org/10.1146/annurev.bi.54.070185.004243
  27. Kapitonov VV, Jurka J. Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci U S A 2006;103:4540-4545. https://doi.org/10.1073/pnas.0600833103
  28. Lal S, Oetjens M, Hannah LC. Helitrons: enigmatic abductors and mobilizers of host genome sequences. Plant Sci 2009:176;181-186. https://doi.org/10.1016/j.plantsci.2008.11.004
  29. Derbyshire KM, Grindley ND. Replicative and conservative transposition in bacteria. Cell 1986;47:325-327. https://doi.org/10.1016/0092-8674(86)90586-6
  30. Klug A. The discovery of the DNA double helix. J Mol Biol 2004;335:3-26. https://doi.org/10.1016/j.jmb.2003.11.015
  31. Craig NL. The mechanism of conservative site-specific recombination. Annu Rev Genet 1988;22:77-105. https://doi.org/10.1146/annurev.ge.22.120188.000453
  32. Kahmann R, Rudt F, Koch C, Mertens G. G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 1985;41:771-780. https://doi.org/10.1016/S0092-8674(85)80058-1
  33. Johnson RC, Simon MI. Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer. Cell 1985;41:781-791. https://doi.org/10.1016/S0092-8674(85)80059-3
  34. Huber HE, Iida S, Arber W, Bickle TA. Site-specific DNA inversion is enhanced by a DNA sequence element in cis. Proc Natl Acad Sci U S A 1985;82:3776-3780. https://doi.org/10.1073/pnas.82.11.3776
  35. Kim BD, Lee KJ, DeBusk AG. Linear and 'lasso-like' structures of mitochondrial DNA from Pennisetum typhoides. FEBS Lett 1982;147:231-234. https://doi.org/10.1016/0014-5793(82)81048-X
  36. Kim BD. Foldback Intercoil DNA. Seoul: Free Academy Press, 2008.