DOI QR코드

DOI QR Code

Quasi-breath-hold (QBH) Biofeedback in Gated 3D Thoracic MRI: Feasibility Study

게이트 흉부자기 공명 영상법과 함께 사용할 수 있는 의사호흡정지(QBH) 바이오 피드백

  • Kim, Taeho (Department of Radiation Oncology, University of Virginia) ;
  • Pooley, Robert (Department of Radiology, Mayo Clinic) ;
  • Lee, Danny (Radiation Physics Laboratory, Sydney Medical School, University of Sydney) ;
  • Keall, Paul (Radiation Physics Laboratory, Sydney Medical School, University of Sydney) ;
  • Lee, Rena (Department of Radiation Oncology, Ewha Womans University) ;
  • Kim, Siyong (Department of Radiation Oncology, University of Virginia)
  • Received : 2014.05.08
  • Accepted : 2014.06.02
  • Published : 2014.06.30

Abstract

The aim of the study is to test a hypothesis that quasi-breath-hold (QBH) biofeedback improves the residual respiratory motion management in gated 3D thoracic MR imaging, reducing respiratory motion artifacts with insignificant acquisition time alteration. To test the hypothesis five healthy human subjects underwent two gated MR imaging studies based on a T2 weighted SPACE MR pulse sequence using a respiratory navigator of a 3T Siemens MRI: one under free breathing and the other under QBH biofeedback breathing. The QBH biofeedback system utilized the external marker position on the abdomen obtained with an RPM system (Real-time Position Management, Varian) to audio-visually guide a human subject for 2s breath-hold at 90% exhalation position in each respiratory cycle. The improvement in the upper liver breath-hold motion reproducibility within the gating window using the QBH biofeedback system has been assessed for a group of volunteers. We assessed the residual respiratory motion management within the gating window and respiratory motion artifacts in 3D thoracic MRI both with/without QBH biofeedback. In addition, the RMSE (root mean square error) of abdominal displacement has been investigated. The QBH biofeedback reduced the residual upper liver motion within the gating window during MR acquisitions (~6 minutes) compared to that for free breathing, resulting in the reduction of respiratory motion artifacts in lung and liver of gated 3D thoracic MR images. The abdominal motion reduction in the gated window was consistent with the residual motion reduction of the diaphragm with QBH biofeedback. Consequently, average RMSE (root mean square error) of abdominal displacement obtained from the RPM has been also reduced from 2.0 mm of free breathing to 0.7 mm of QBH biofeedback breathing over the entire cycle (67% reduction, p-value=0.02) and from 1.7 mm of free breathing to 0.7 mm of QBH biofeedback breathing in the gated window (58% reduction, p-value=0.14). The average baseline drift obtained using a linear fit was reduced from 5.5 mm/min with free breathing to 0.6 mm/min (89% reduction, p-value=0.017) with QBH biofeedback. The study demonstrated that the QBH biofeedback improved the upper liver breath-hold motion reproducibility during the gated 3D thoracic MR imaging. This system can provide clinically applicable motion management of the internal anatomy for gated medical imaging as well as gated radiotherapy.

연구의 목적은 의사호흡정지(QBH) 바이오 피드백이 의료영상획득 시간의 큰변화 없이 잔류 호흡 운동을 조절함으로써 호흡 운동에 의한 영상 오류를 줄이고, 게이트 3차 흉부 자기 공명 영상을 향상시킬 수 있다는 가설을 실험하는 것이다. 가설을 확인하기 위해 건강한 다섯 사람을 대상으로 3T 지멘스 엠알아이의 호흡 탐색기가 포함된 T2 가중 스페이스 엠알 펄스 시퀀스를 이용해 두번의 게이트 자기공명 영상 연구를 시행 하였다: 자유 호흡 상태와 의사호흡정지 바이오 피드백 호흡상태, 의사호흡정지 바이오 피드백 시스템은 알피엠(RPM) 시스템(실시간 위치 관리시스템, 베리안)을 사용하여, 복부의 외부 위치를 측정하고, 음향과 시각적으로 각각의 호흡주기의 90% 위치에서 2초 숨을 정지하도록 안내하는 방법을 사용했다. 평가방법은 의사호흡정지 바이오 피드백 시스템을 이용시 간 상부의 호흡정지모습의 재현성이 게이팅 영역 내에서 향상되는지를 지원자의 실험을 통해 평가하였다. 자유호흡상태와 의사호흡정지 바이오 피드백상태에서 3차 흉부자기공명영상내에 호흡 운동에 의한 영상 오류와 게이팅영역 내에서의 잔류 호흡 운동 조절여부도 함께 평가했다. 또한, 복부 변위의 RMSE도 (제곱근오차) 조사되었다. 의사호흡정지 바이오 피드백방법을 사용함으로 자유호흡의 경우보다 게이트 3차 흉부 엠알 영상에서 폐와 간에서 호흡운동에 의한 영상오류의 감소 결과를 획득했다(영상획득시간: ~6분). 이는 의사호흡정지 바이오 피드백사용시, 게이팅 영역에서 복부 운동 감소와 횡경막의 잔류 움직임 감소가 일치함을 의미한다. 따라서, 알피엠을 통해 얻은 복부 변위의 전체 자료에서평균 RMSE는 (제곱근오차) 자유 호흡의 2.0 mm에 비해 7 mm (67% 감소, p값=0.02)로 감소하였으며, 게이팅영역만을 고려했을때는 자유 호흡의 1.7 mm가 의사호흡정지 바이오 피드백 호흡을 사용함으로써 0.7 mm (58 % 감소, p값=0.14) 로 개선되었다. 선형 피팅을 사용하여 얻은 평균 기준 이동값은 의사호흡정지 바이오 피드백 을 사용하면 자유 호흡 5.5 mm/분보다 0.6 mm/분(89% 감소, p값=0.017)으로 감소되었다. 이 연구는 의사호흡정지 바이오 피드백을 이용해 게이트 3차 흉부 자기 공명 영상 중에 간 상부의 호흡정지 재현성이 향상되는 것을 보여 주었다. 이 시스템은 내부 해부학의 운동을 조절함으로써 게이트 의료 영상과 방사선 치료에 임상적으로 적용 할 수 있다.

Keywords

References

  1. Yamamoto T, Langner U, Loo Jr BW, Shen J, Keall PJ: Retrospective analysis of artifacts in four-dimensional CT Images of 50 abdominal and thoracic radiotherapy patients. International Journal of Radiation Oncology*Biology*Physics 72(4):1250-1258 (2008) https://doi.org/10.1016/j.ijrobp.2008.06.1937
  2. Langner UW, Keall PJ: Quantification of artifact reduction with real-time cine four-dimensional computed tomography acquisition methods. International Journal of Radiation Oncology* Biology*Physics 76(4):1242-1250 (2010) https://doi.org/10.1016/j.ijrobp.2009.07.013
  3. Yang J, Yamamoto T, Cho B, Seo Y, Keall PJ: The impact of audio-visual biofeedback on 4D PET images: results of a phantom study. Medical Physics 39(2):1046-1057 (2012) https://doi.org/10.1118/1.3679012
  4. Hugo GD, Campbell J, Zhang T, Di Yan DS. Cumulative lung dose for several motion management strategies as a function of pre-treatment patient parameters. Int J Radiat Oncol Biol Phys 74:593-601 (2009) https://doi.org/10.1016/j.ijrobp.2008.12.069
  5. Theuws J, Kwa SLS, Wagenaar AC, et al: Prediction of overall pulmonary function loss in relation to the 3-D dose distribution for patients with breast cancer and malignant lymphoma. Radiotherapy and Oncology 49(3):233-243 (1998) https://doi.org/10.1016/S0167-8140(98)00117-0
  6. Marks LB, Bentzen SM, Deasy JO, et al: Radiation dose-volume effects in the lung. International Journal of Radiation Oncology*Biology*Physics 76(3):S70-S76 (2010) https://doi.org/10.1016/j.ijrobp.2009.06.091
  7. Lim S, Park SH, Ahn SD, et al: Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing. Medical Physics 34(11):4514-4518 (2007) https://doi.org/10.1118/1.2795829
  8. Wang Y, Christy PS, Korosec FR, et al: Coronary MRI with a respiratory feedback monitor: the 2D imaging case. Magnetic Resonance in Medicine 33(1):116-121 (1995) https://doi.org/10.1002/mrm.1910330118
  9. Venkat RB, Sawant A, Suh Y, George R, Keall PJ: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform. Physics in Medicine and Biology 53(11):N197 (2008) https://doi.org/10.1088/0031-9155/53/11/N01
  10. George R, Chung TD, Vedam SS, et al: Audio-visual biofeedback for respiratory-gated radiotherapy : Impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys 65(3):924-933 (2006) https://doi.org/10.1016/j.ijrobp.2006.02.035
  11. Locklin JK, Yanof J, Luk A, Varro Z, Patriciu A, Wood BJ: Respiratory biofeedback during CT-guided procedures. Journal of Vascular and Interventional Radiology 18(6):749-755 (2007) https://doi.org/10.1016/j.jvir.2007.03.010
  12. Kini VR, Vedam SS, Keall PJ, Patil S, Chen C, Mohan R: Patient training in respiratory-gated radiotherapy. Medical Dosimetry 28(1):7-11 (2003) https://doi.org/10.1016/S0958-3947(02)00136-X
  13. Arnold JFT, Mörchel P, Glaser E, Pracht ED, Jakob PM. Lung MRI using an MR-compatible active breathing control (MR-ABC). Magnetic Resonance in Medicine 58(6):1092-1098 (2007) https://doi.org/10.1002/mrm.21424
  14. Keall P, Mageras G, Balter J, et al: The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33:3874-3900 (2006) https://doi.org/10.1118/1.2349696
  15. Berbeco RI, Nishioka S, Shirato H, Chen GT, Jiang SB: Residual motion of lung tumours in gated radiotherapy with external respiratory surrogates. Physics in Medicine and Biology 50(16):3655 (2005) https://doi.org/10.1088/0031-9155/50/16/001
  16. Park YK, Kim S, Kim H, Kim IIH, Lee K, Ye SJ: Quasibreath- hold technique using personalized audio-visual biofeedback for respiratory motion management in radiotherapy. Medical Physics 38:3114 (2011) https://doi.org/10.1118/1.3592648
  17. Kim T, Pollock S, Lee D, O'Brien R, Keall P: Audiovisual biofeedback improves diaphragm motion reproducibility in MRI. Medical Physics 39:6921 (2012) https://doi.org/10.1118/1.4761866
  18. McRobbie DW, Moore EA, Graves MJ, Prince MR: MRI from Picture to Proton Cambridge University Press 2006.

Cited by

  1. Development of a novel remote‐controlled and self‐contained audiovisual‐aided interactive system for immobilizing claustrophobic patients vol.16, pp.3, 2014, https://doi.org/10.1120/jacmp.v16i3.5359