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We show how a supplier can peg cost measures to the reliability of his time guarantees via the penalty costs considered 
in the framework. The framework also enables us to study the connections between the logistics network and the market. In 
this context, we show that even when the market base increases significantly, the supplier can still use the logistics network 
designed to satisfy lower demand density, with only a marginal reduction in profit. Finally we show how the framework is 
useful to evaluate and compare various logistics system improvement strategies. The supplier can then easily choose the improvement 
strategy that increases his profit with the minimal increase in his logistics costs.
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1. Introduction1)

In this era, the major trends in business include shortened 
product lifecycle, mass customization, production in low-cost 
country, globalization to name a few. The fast changing so-
phistication of consumer needs as well as the rapid advance-
ment of new technologies has led to the constant evolution 
of competitive paradigms in the market. Among many factors 
of competitive power the response speed or faster delivery 
time might be one of the most important factors as long as 
the price and the quality are in a competitive range. In their 
book on time-based competition, Stalk and Hout [24] said 
that
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Generally, if a time-based competitor can establish a 
response three or four times faster than its competitors, 
it will grow at least three times faster than the market 
and be at least twice as profitable as the typical industry 
competitor. (p.98)

Recently, in December 2013 Amazon CEO Jeff Bezos an-
nounced the company’s drone delivery plans which would 
let customers receive packages they ordered on Amazon web-
site in as little as 30 minutes. The benefits of being faster 
include increased demand consequently larger market share, 
reduced unit handling cost, lower carrying cost, shorter fore-
cast horizon, reduced inventories, improved customer service 
level and better market position etc. Consequently, many firms 
in various industries have been using delivery time guarantee 
strategies to their customers. See Benson [1], Blackburn et al. 
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[2], Daniels and Essaides [3], Tucker [26] for various suc-
cessful delivery time guarantee business cases. In this re-
search we focus on the use of logistics time guarantees in 
a retail environment with a single supplier and many retailers. 
And since the ability to fulfill the time guarantees depends 
on the logistics network and the various parameters that con-
trol logistics speed of the distribution system, we explicitly 
consider these issues in our modeling. In this context the 
supplier was interested to answer questions such as what are 
the optimum time guarantees it should offer under various 
market conditions. What would be the impact of adopting 
such a time guarantee strategy on its existing logistics sys-
tem? What changes should be made to the logistics system? 
Should additional warehouses be added and should the ware-
housing performance be improved in order for the supplier 
to meet the promised time guarantees? How should the sup-
plier evaluate various logistics strategies to choose the most 
beneficial one? What will be the impact of implementing 
such a strategy on its market share? These are some of the 
research questions, which will be investigated in this paper. 
We next review the relevant literature and use that to further 
motivate, define and situate our research.

2. Literature Review 

There is a substantial amount of research work that looks 
at the impact of time performance on the behavior of a firm. 
Dewan and Mendelson [4], Mendelson and Whang [18], and 
Stidham [25] are some of the earliest papers that took into 
account users’ delay cost to study the internal pricing and 
capacity selection for the internal service operations of a 
firm. Hill and Khosla [12] used a deterministic model for 
expressing demand as a function of delivery lead-time and 
price to study the impact of lead-time reduction of a firm’ 
s revenues and costs. Several researchers have also studied 
the delivery time performance in a competitive environment, 
using queuing theory to model a firm’s operations and game 
theoretic frameworks to model competition. Kalai et al. [13] 
studied the role of processing capacity in a competitive en-
vironment, where two firms compete for a stream of custo-
mers via their choice of processing speed. Li [16] developed 
a model to examine the use of inventory for superior delivery 
time by firms to compete for orders in a market. Li and Lee 
[17] developed a queuing model to study price competition 

between two firms, where a stream of customers consider 
both price and delivery speeds in selecting a service. Lederer 
and Li [15] extended the above work to develop a queuing 
model 4 where firms compete by choosing different prices 
and service rates for multiple types of customers with di-
fferent delay costs. Their results support Stalk and Hout’s 
[24] basic contention that firms that can establish faster 
responses than the competitors will grow faster, i.e., have 
a larger market share as well as be more profitable. There 
are a few research papers, which have studied the issues of 
firms quoting uniform delivery times in the closely related 
service areas. So and Song [23] developed a single firm 
queuing model to study the optimal selection of price, de-
livery time guarantee and capacity expansion to maximize 
the profit of a firm in a service sector. The demands are 
assumed to be log linear in both price and delivery time. 
Palaka et al. [20] also study these issues using a very similar 
queuing model. Their model uses a demand function that 
is linear in price and time. They also consider congestion 
costs and lateness penalty costs in the queuing system. So 
[22] extends So and Song’s [23] paper to a multi firm setting 
and study the equilibrium solution in a multi firm game. Hill 
et al. [11] study delivery time guarantees more generally 
using an expected profit model. They approximate the de-
livery behavior of the firm using exponential distribution and 
provide a closed form expression for the optimal delivery 
time quote. Our work is distinct from the above research 
in two important ways. Firstly this research was focused on 
strategies such as quoting lead-times or offering some kind 
of delivery time guarantee in the context of firms operating 
in service or manufacturing sector. On the other hand we 
study the component with a significant effect on a firm’s 
competitive capability in the retail sector : logistics time. Se-
condly in all of the above papers, the firm’s operation was 
modeled using queuing theory, usually as a M/M/1 queue. 
However such queuing models are not a good representation 
of firms’ logistics systems, which are usually modeled using 
mathematical programming. In our research, we seek to extend 
the time based competition to logistics systems, to understand 
how kind of firms should tailor time guarantees to their lo-
gistics systems and vice versa, in order to compete under 
various market conditions. Such research is critical given the 
increasing emphasis that retailers are placing on their logi-
stics response. Indeed such efforts by firms to improve their 
logistics response have already been reported in practice. 
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Dekhne [7] provides the example of an USCO Logistics (a 
3PL logistics provider) project where a large consumer pro-
ducts and electronics supplier restructured its logistics net-
work in order to meet customer requirements that 95 deli-
veries be made via ground within three days. Similarly 
Dignan [8] reports that Lowe’s, the No 2 home improvement 
retailer in the US, requires its suppliers to be on time 98% 
the best of our knowledge, there is no research that clearly 
examines the link between time based competition and a 
firm’s logistics response. Thus we develop an analytical frame-
work that jointly considers approximate logistics models and 
demand models to answer those questions.

This paper focuses on the situation where a supplier pro-
mises a logistics time guarantee to a retail market. Also the 
demand faced by the supplier is influenced by the time gua-
rantee. Delay costs are used to quantify the ‘opportunity costs’ 
associated with long logistics times. The logistics network 
of the supplier is modeled using continuous approximation 
theory. The actual logistics time is obtained from this model. 
Then the supplier based on the delay costs, the market con-
ditions and the actual logistics time determines the optimal 
logistics time guarantee, which maximizes his profit. It should 
be highlighted at the outset that our emphasis when develo-
ping mathematical models will be on simplicity and tract-
ability rather than on accuracy of the models. The focus is 
on developing approximate models that are easy to solve and 
that provide qualitative managerial insights. Thus we use con-
tinuous approximation (CA) methods to model the supplier’s 
logistics system, and consequently the logistics response as 
shown in <Figure 1>. 

<Figure 1> Basic Model

The rest of paper is organized as follows. In Section 3 
we present our model. We then present a numerical analysis 
in Section 4 and use this to derive insights for the firm’s 
decision making. Section 5 concludes this research by summa-
rizing the results and providing future research directions. 

3. Model Formulation and Analysis

The supplier offers a logistics time guarantee, within 
which he promises delivery to the retail market. We assume 
that retailers in the market are sensitive to these time guaran-
tees and prefer a more responsive supplier, i.e., a supplier 
who offers a shorter logistics time guarantees. Thus the de-
mand faced by the supplier is influenced by the logistics 
time guarantee,  . This is the decision variable. The actual 
logistics time, Tl, depends on the logistics system and is 
a random variable. Also the supplier is expected to compen-
sate the retailers whenever the logistics time guarantee is 
not met. Thus the objective is to determine the optimal logis-
tics time,  , which maximizes the supplier’s expected 
profit.

3.1 Logistics Network Model

The supplier serves stores in a certain retail market with 
a range of products. Some of the products are produced lo-
cally within the country and the others are imported. These 
products are then transported to various warehouses. When 
a retailer orders a product from the supplier, it is dispatched 
from one of the warehouses. There is a time delay involved 
for the supplier to process the order and for the inventory 
system to ready it for shipment. The products are shipped 
from the warehouse to the stores using trucks. For the pur-
pose of this study, we treat all these products as a single 
homogenous product. We also assume that all the shipments 
are direct, i.e., they are one to one. We now develop a logis-
tics network model to represent this operation. Usually such 
production-distribution networks are modeled using discrete 
mathematical programming. While these models provide ma-
nagers with optimal solutions, data and computational re-
quirements increase tremendously as models become more 
realistic. In addition, data reliability and hence model accu-
racy decrease. Further, sensitivity analysis and incorporation 
of uncertainty can lead to countless computational require-
ments. Also, as Geoffrion [10] pointed out, mathematical 
programming models do not provide insights into the ‘why’ 
of a solution other than deriving ‘what’ the solution is. How-
ever for our analysis the ‘why’ is what matters. To remedy 
these weaknesses, we propose to model the supplier’s logis-
tics network model using continuous approximation methods. 
The idea of applying continuum mechanics techniques to fi-
nite-dimensional operations research problems was first dem-
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onstrated by Newell [19]. For continuous approximation, 
problems are formulated as continuous functions that are 
amenable to solution by elementary calculus. The logistics 
literature appears to be a forerunner in utilizing this method. 
Daganzo [5] addresses different logistics problems and pres-
ents a number of continuous approximation models while 
Langevin et al. [14] present a taxonomy of continuous ap-
proximation models for freight distribution problems. The 
continuous approximation approach uses a somewhat sim-
plified analysis that focuses on issues of partitioning the mar-
ket

into roughly circular regions to be served by warehouses 
under somewhat restrictive assumptions about topology and 
demand density, leaving the decision of precise locations for 
subsequent analysis. We call these regions consolidation 
areas. This concept of consolidation areas is also analogous 
to Erlenkotter’s [9] General Market Areas and Dasci and 
Verter’s [6] Service Regions. These two papers also consider 
similar logistics network planning problems and use con-
tinuum approximation methods. Assume that the supplier 
wants to open new warehouses in a market area (the entire 
region where the supplier operates) where each warehouse 
serves a single consolidation area. Decision variables are the 
number of warehouses, their location, and respective con-
solidation areas. The warehouses can be located anywhere 
in the market area. Hence, let AM denote the market area. 
The approximation model then makes the following simplify-
ing assumptions and uses the notation defined therein to char-
acterize the system :

A1 : The retail stores, distributed over AM, are modeled as 
the realization of a slowly varying spatial Poisson pro-
cess with rate δS(X) (stores per square mile). Thus 
 ∫∈ gives the number of stores in 

AM

A2 : All the retail stores are alike, i.e., they face the same 
demand. Thus we define a slowly varying demand rate, 
λS(t) (units per day) over the time horizon TH, at each 
store. Also TH represents considerably longer time frame 
than other times we consider in the model. For example 
TH = 3 months, can be thought of as the time period 
in which a retailer signs a contract with the supplier.

A3 : The supplier transports product to the store from the 
warehouse, using a fleet of homogeneous vehicles with 

shipments of size C units. The cost of transportation 
per mile is cd ($/mile). Pipeline inventory costs and 
holding costs are ignored in this model.

A4 : The trucks travel from the warehouse to the store at 
a speed of ρ (hour/mile). We assume that speed is nor-
mally distributed, i.e., ∼ 

A5 : The cost opening and operating each warehouse is cf 

($/day), prorated over the time horizon of its operation. 
We assume that all warehouses are identical and re-
locate able. There are also no throughput limits on the 
warehouses.

A6 : The time to process the order at the warehouse is TO. 
We assume that this time, which depends on the deci-
sions, such as the type of inventory policy, the type 
of warehouse operation taken during the tactical design 
phase of operation, can be modeled as a normal dis-
tribution, i.e., ∼  

A7 : The supplier transports product from the manufacturing 
points to the warehouses in using rail transportation. 
We assume that this inbound operation doesn’t have 
any effect on the fulfillment of the logistics time guar-
antees as well as on the logistics cost.

How many warehouses should there be, where and what 
is the size of their consolidation areas to cover the total mar-
ket area AM at the least cost is the strategic question that 
the supplier answers to determine a cost optimal system. As 
outlined before, we first determine the optimal consolidation 
areas and then determine the precise facility locations by sub-
sequent analysis. 

All parameters are assumed to vary slowly within a con-
solidation area but the model allows large differences across 
areas, which are likely to be served by different facilities. 
Even if large differences occur in close neighborhoods, con-
tinuous approximation still gives good results as pointed out 
by Daganzo [5]. Given this, the logistics cost prorated per 
unit in the logistics system is given by : 

 




      (1)
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where K is a constant that depends on the distance metric 
and the shape of the consolidation area. K  is the aver-
age distance from the warehouse to a store in the consoli-
dation area, where the warehouse located is at center of the 
area. Newell [19] and Erlenkotter [9] have used this well- 
known result among many other authors. Thus the optimal 
consolidation area and the corresponding optimal logistics 
cost are given by :

       

 




 





(2)

       
   

 



 




 



(3)

Dasci and Verter [6] and Geoffrion [10] have also ob-
tained similar results. The geometry of consolidation area 
is not crucial to the analysis because it only affects K values. 
Also the actual logistics time, Tl, can be expressed as the 
sum of two random variables, i.e., Tl = Tm+TO, where Tm  
∼   

 , is the time in transit from the 
warehouse to the store and 

TO ~     as previously defined in A6, is the time 
from the placement of an order to its shipment from the ware-
house. Thus     

∼  

 

  (4)

The supplier uses this distribution in his profit model to 
determine the optimal logistics time guarantee,  , that he 
should offer to the market.

3.2 Demand Model

The supplier serves a market in which retailers are re-
sponsive to the logistics time guarantee offered, i.e., his de-
mand is influenced by the time guarantee. From the notation 
developed in A2, Section 3.1, this demand is defined by the 
store level demand rate, . Thus   decreases monot-
onically with . Given that the shortest guarantee given by 
express mail companies like UPS is one day, we assume 
the least logistics time guarantee the supplier can offer is 
one day. Under this guarantee the supplier will capture all 
of the market demand. Similarly if the supplier offers a very 
long guarantee he will capture almost none of the market. 

Also since the supplier under consideration is in a very stable 
market, we assume that the market is perfectly competitive 
in price, i.e., all the suppliers offers the same price to the 
retailers. So the only way in which the suppliers can attract 
retailers is by offering a reduced time guarantee. We assume 
the following log linear function for the demand rate:

 


     (5)

where b is a positive constant representing ‘logistics time 
guarantee elasticity of demand’, MR is the total time sensitive 
demand rate of the market. So and Song [23] as well as 
Hill and Khosla [12] use similar functions to relate demand 
and time. Rust and Metters [21] also present a number of 
such mathematical models that connect consumer behavior to 
service management variables such as delivery time.

3.3 Supplier’s Profit Model

After the supplier promises a logistics time guarantee of 
 , the retailers would expected to be compensated in some 
way if the promises are not met on time. The supplier would 
also face a loss of goodwill as well might not be chosen 
in future by the dissatisfied retailer. For example Dignan [8] 
reports how at Lowe’s for a late shipment, the supplier is 
hit with a fine of 20% of the invoice value of the late ship-
ment and that goes up to 30% in the next month, and so 
on. Thus we assume that the supplier is charged a penalty 
of c ($/unit) per unit of product that the retailers receive 
later than  . We also assume that the penalty paid by the 
supplier to the retailers is high enough to keep their entire 
market share, i.e., the market share remains unaffected by 
late deliveries. Thus the total penalty cost paid by the suppli-
er is given by

              (6)

where      is the probability that the actual logis-
tics time taken the supplier’s logistics system, Tl , is greater 
than the logistics time guarantee,   and  (tG) is the time 
sensitive demand as given by (5). Also given (4), we can 
rewrite     as

    





  
   




     

(7)
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Letting p be the average gross margin per unit of product, 
we can thus write the profit function as :

    (8)
   

where

 
 (9)

  
 




 




 



(10)

    (11)

The above non-linear program represents the profit model. 
The objective is to find the optimal logistics time guarantee, 

 , so that the supplier can maximize the expected profit 

per period.

4. Analysis

To begin the analysis, we first study the properties of the 
objective function of  , by first studying the component 
parts that are functions of  .

Proposition 1 For all b > 0, LC( ) is strictly increasing in 
 . 

Proof. From (9) and (10) we can rewrite    to be 











, where  
 




 



 is a 

positive constant. Q.E.D.

Proposition 2 If b > 3, LC( ) is convex in   and if 0 < 
b < 3 LC( ) is concave in  .

Proof. The first and second derivatives of LC(  ) can be 
expressed as




 












,



















respectively, where  
 




 



 is a 

positive constant. If 0 < b < 3 then the second de-
rivative is negative, i.e., LC() is concave and if b 
> 3 then the second derivative is positive, LC() is 
convex. Q.E.D.

Proposition 3   has the maximum value of    when 


  minimizes     . 

Proof.   has two components, the revenue and the cost. 
The first term in equation (8) represents revenue part. 
And the last two terms of (8) represents cost part. 
<Figure 2> illustrates the shape of the cost function 
has only one minimum at  . And if we notice that 

the revenue part is monotonically decreasing function 
in   then   has it’s minimum at t =   while 

  minimizes the cost part of the model. Q.E.D. 

<Figure 2> Shape of the Cost Function

Since Tl is normally distributed, PC() don’t have a clear 
functional form in  . This means that we can’t find a closed 
form solution for   analytically. Thus the objective function 

and the optimal solution have to be solved by numerical 
methods. We proceed to do that using a realistic example. 
Geoffrion [10] outlined a series of ‘auxiliary models’, similar 
to the logistics model of Section 3.1. In this section, we use 
the parameter values of Geoffrion’s study to model the sup-
plier’s logistics system. This is then used to study the proper-
ties of   and to find the optimal solution numerically. 
Thus we simulate the above system over a range of values 
for the parameters, given in <Table 1> and study the 
response.
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<Table 1> Parameter Values

Parameters Values

b (Demand sensitivity to time guarantee) 0.1, 0.25, 0.5, 0.75, 1, 
1.5, 2.0, 2.5, 3.0, 3.5

p (Unit price) 5

c (Penalty cost) 10

tG (Delivery time guarantee) [1:15]

MR (Market Demand Rate (units/day)) 10,000

cd (Transportation cost ($/mile)) 5

C (Vehicle capacity (units)) 10,000

 (Store density (stores/sq-mi)) 5×10−4

cf (Prorated facility cost ($/day)) 10,000

 (Mean Pace (hrs/mile)) 2×10−2

 (Std. Dev. of Pace (hrs/mile)) 2×10−2

  (Mean Order Processing Time (hrs)) 18

 (Std. Dev. Of Order Processing Time (hrs)) 18

AM (Total Market Area (sq-mi)) 106(1 Million)

TH (Supply Time Horizon (days)) 90

Working hours in a day (hrs) 18

4.1 Analysis with Respect to tG

<Figure 3> and <Figure 4> show how the expected profit 
varies under different market conditions and different logis-
tics time guarantees offered by the supplier. These results 
support our intuition that as the market becomes increasingly 
sensitive to the logistics time guarantee (), i.e. as b in-
creases, the supplier’s optimal logistics time guarantees () 
are driven lower in order for him to compete for demand 
share. Also the supplier’s profit declines more steeply under 
higher b values (b > 1). This is because of two related 
reasons. First as b > 1, the supplier’s demand share decreases 
very steeply with increasing  . For example when b = 2 
(an extremely competitive market) and 7 <  , the demand 
share of the supplier nearly halves for each day’s increase 
in  . The unit logistics costs also increase rapidly in  . 
Proposition 1 also supports this. 

<Figure 3> Low Sensitivity Case

<Figure 4> High Sensitivity Case

In the above example these costs increase by a third for 
each day’s increase in  . One reason for this is because 
when the supplier’s logistics system facing a shrinking de-
mand share is used as it is, it will supply fewer and fewer 
units of the product increasing the cost per unit. This is 
shown in <Figure 4>. Correspondingly the changes to the 
supplier’s logistics system, under different market conditions 
and time guarantees are shown in <Figure 5>. It can be seen 
that as the demand share decreases, it is served by fewer 
warehouses. This leads to an increase in the average travel 
distance and consequently increases in travel time, Tm. Also 
under high time competition, the supplier is forced to offer 
a low time guarantee in spite of a high probability of the 
logistics system not meeting that guarantee.

<Figure 5> Logistics Cost vs Logistics Time Guarantee

For example, when b = 2,   = 2 days, vs.   = 4 days 
when b = 0.25, even though the logistics system cannot meet 
this lower guarantee 22.8% of the time. If   = 4 days, the 
guarantee is not only 1% of the time. However the market 
share reduces from 25% to 4%. Thus the supplier is forced 
to win retail demand at the cost of poor performance in meet-
ing the logistics time guarantees.

However in reality such poor performance will be un-
acceptable to most retailers, especially under conditions 
when the product is time sensitive. This is because such in-
ability to deliver will invariably cause high stock outs. In 
such a case retailers will charge the supplier higher penalties 
for not meeting the promised time guarantees. This suggests 
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the need for suppliers to adopt ‘flexible’ logistics systems 
and strategies to be able to deliver efficiently under differing 
time competitive market conditions. For example, when b 
= 2, the supplier should consider using a more efficient logis-
tics strategy to serve this highly time sensitive market than 
the one he uses to serves less time sensitive markets. One 
possible strategy could be the use of a fast third party logis-
tics provider who can guarantee very short logistics times 
to supply. Even though the logistics costs would be higher, 
these will be mitigated by lower penalty costs and higher 
market share. 

4.2 Sensitivity Analysis

In this section we would like to study the impact on the 
optimal values of logistics time guarantee () and expected 
profit,  , of varying one of the parameters while keeping 
others constant. This is useful to study the impact of the 
parameter on the behavior of the supplier as well as to com-
pare two suppliers that are different only in this parameter.

4.2.1 Changing MR

We first consider the case where the total time sensitive 
demand rate of the supplier’s market increases, i.e., MR 
increases. <Figure 6> considers one such case for a moderately 
competitive market (b = 1) in which MR increases by 6.75 
times. This value, which changes the response of the supplier, 
was determined using interpolation. The optimal logistics time 
guarantee changes accordingly from 3 days to 2 days. 

<Figure 6> Sensitivity Analysis on MR vs. Time Guarantee

This also means that supplier now commands a larger mar-
ket share, which goes up to 50% from 33%. The unit logistics 
costs are also halved, changing from 8.9 cents to 4.1 cents. 
This is because the supplier’s logistics system is correspond-
ingly changed. First the optimal number of warehouses in-
creases from 10 to 47 in order to handle the denser demand. 

This increase also implies that the average travel distance 
decreases significantly.

Indeed the travel distance reduces from 119 miles to 55 
miles. It is because of this reduction, and the consequent 
reduction in the motion time, Tm, that the supplier is able 
to reduce the optimal time guarantee by a day. However one 
important issue remains. The above change in the supplier’s 
logistics time guarantee is based on the implicit assumption 
that the supplier is flexible enough to change his logistics 
system accordingly. But sometimes this may not be possible 
and the supplier might be constrained to supply the product 
using a less than optimal logistics system. Our model enables 
the supplier to easily measure the effect of his response in 
such a scenario. For example, say in the above case the sup-
plier has to supply the retail market with increased market 
demand, with the original logistics network comprising of 
10 warehouses. In such a scenario, the supplier still has to 
offer the original optimal time guarantee, i.e.,   = 3 days 
to maximize his revenue. 

<Figure 7> Sensitivity Analysis on MR vs. Profit

But as shown in <Figure 7>, interestingly the difference 
in the optimal profit between the two cases is very little, 
amounting to only $4098/day, i.e., a difference of less than 
4%. Such little change in the profit is because of two reasons. 
Firstly the effect of the unit logistics cost on the expected 
profit is quite minimal. For example in both the configuration 
of the logistics system, these costs amount to less than 2% 
of the unit price. While these costs might appear to be quite 
conservative, unit logistics costs in real logistics systems usu-
ally are less than 10% of the unit price. Thus even though 
the unit logistics costs in the optimal system are 65% of 
the cost of using the original, and thus non optimal, system, 
because of the low values of these costs relative to the unit 
price, the expected profit doesn’t change much. The second 
reason is because of the EOQ like structure of optimal unit 
logistics cost, LC(  ), it is not sensitive to changes in the 
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values of the parameters. Dasci and Verter (2001) have also 
pointed this out. 

4.2.2 Changing the Supplier’s Logistics System

The supplier would seek to improve his logistics time by 
making changes to his logistics system. Some of the ques-
tions that need to be answered include what aspects of the 
logistics system should be changed, how does the supplier 
trade off among various improvement solutions, what is the 
impact of implementing one such solution on the expected 
profit? Our model enables the supplier to do this very easily. 
Suppose the supplier wants to reduce the variance of the 
actual logistics time, Tl. In order to do this he can reduce 
the variance of either of the two component times, motion 
time (Tm) or order processing time (To). Suppose that the 
supplier can reduce the variance in either of the two time 
components if the respective cost parameters are doubled. 
Assume  is halved by paying two times the transportation 
cost per mile, cd, i.e., 10/mile instead of 5/mile. This is a 
reasonable transportation improvement strategy. Similarly as-
sume  is halved by paying two times the warehouse costs 
per day, cf, i.e., $ 20000/day instead of $10000/day. This 
also can be a reasonable warehousing improvement strategy. 
The question that the supplier would seek to answer is which 
of these two strategies to use and what would be the con-
sequent impact on the expected profit. <Figure 8> below 
(TIS: transportation improvement strategy, WIS : warehouse 
improvement strategy) shows the effect of these strategies 
on the expected profit. 

 <Figure 8> Warehouse vs. Transportation Improvement 

Strategies

We see that the warehousing improvement strategy offers 
the most improvement in the expected profit. Indeed the prof-
it increases by 34% over the profit obtained with the original 
logistics system. Also this improvement strategy enables the 
supplier to offer a shorter optimal time guarantee of 2 days. 
This is because the deviation of the actual logistics time is 

reduced by 45%, from 1.13 days to 0.64 days. Consequently 
the supplier’s market share also increases from 33% to 50%. 
In comparison the transportation improvement strategy in-
creases the profit only by 2%. Also since the optimal time 
guarantee doesn’t change from the original time guarantee 
of 3 days, the supplier’s market share doesn’t increase. The 
deviation is reduced only marginally from 1.13 days to 1.05 
days. In the transportation improvement strategy the unit lo-
gistics costs increased by almost 60%. In contrast, the ware-
house improvement strategy causes these costs to go up by 
only 10%. Thus we can conclude that the supplier would 
prefer the warehouse strategy for improving his profit as well 
as his logistics response. Our model can easily evaluate the 
impact of other similar improvement strategies as well. 
Suppose that the supplier has two warehousing technology 
alternatives, one that halves the mean order processing time,  
 and the other halves the standard deviation, . Assuming 
that use of either of these alternatives doubles the warehouse 
costs per day, cf, the supplier can easily make his decision. 

 <Figure 9> Warehouse vs. Transportation Improvement 

Strategies

<Figure 9> (WISM :  warehouse improvement strategy in 
mean, WISD : warehouse improvement strategy in standard 
deviation) shows the system response to these two alterna-
tives. Clearly the supplier benefits more by adopting the tech-
nology that halves the deviation of order processing time.

5. Conclusion

While there are numerous researches that deal with firms 
offering time-based guarantees for their services, they model 
the firm’s operation as a queue or using a distribution. Con-
versely there is no research in the area of logistics system 
modeling, which explicitly connects a firm’s logistics re-
sponse to its ability to compete in the market. In this paper 
we tried to fill this gap. Using a stochastic demand function 
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and a continuous approximation model of the supplier’s logis-
tics system, we have studied the optimal logistics response 
under varying market conditions, defined by varying sensitiv-
ities to both time and price. We have also demonstrated the 
impact of changing various parameters of the supplier’s logis-
tics system on the optimal profit. This framework in turn 
is useful for a supplier, aspiring to be a time-based competitor, 
to choose the best possible logistics improvement strategy. 
A number of extensions of this research are required to over-
come the limitations of the framework. The first limitation 
is that of the highly simplified nature of the approximate 
logistics model. Indeed we have assumed that the supplier 
services the retail market out of a single-tiered network of 
warehouses. While this maybe still valid, as in the case of 
Geoffrion’s [10] study, most retail logistics networks nowa-
days consists of usually two or more tiers. We need to extend 
the continuous approximation models to such cases. A further 
limitation of the logistics model is the assumption that the 
supplier always has sufficient inventory on hand to meet 
the time guarantee. We can extend our model to consider 
both the optimal inventory level and time guarantee in our 
subsequent research. Furthermore noticing that in retail mar-
kets, where logistics have become quite critical, competing 
suppliers will respond suitably to prevent loss of market 
share. A game theoretic multi-firm model could be developed 
where each supplier can react to other’s actions in the future 
research. 
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