DOI QR코드

DOI QR Code

Simulation of Separation Properties of Propylene/propane in Silver Nanoparticle Containing Facilitated Transport Membrane

전산모사 프로그램을 이용한 은나노함유 촉진수송막의 프로필렌/프로판 분리특성 예측

  • Park, Chae Young (Resources Separation and Recovery Research Group, Environmental Resources and Process Research Center Research Institute of Chemical Technology) ;
  • Han, Sang Hoon (Resources Separation and Recovery Research Group, Environmental Resources and Process Research Center Research Institute of Chemical Technology) ;
  • Kim, Jeong Hoon (Resources Separation and Recovery Research Group, Environmental Resources and Process Research Center Research Institute of Chemical Technology) ;
  • Lee, Yongtaek (Department of Bio-Applied Chemistry, Chungnam National University)
  • 박채영 (한국화학연구원 환경자원공정연구센터 자원분리회수연구그룹) ;
  • 한상훈 (한국화학연구원 환경자원공정연구센터 자원분리회수연구그룹) ;
  • 김정훈 (한국화학연구원 환경자원공정연구센터 자원분리회수연구그룹) ;
  • 이용택 (충남대학교 바이오응용화학과)
  • Received : 2014.09.18
  • Accepted : 2014.10.24
  • Published : 2014.10.31

Abstract

This study is aimed to separate propylene and propane using membrane process instead of NCC(Naphtha Cracking Center) $C_3$ splitter. Membrane process is a low energy consumption and eco-friendly process while $C_3$ splitter requires high energy consumption in petrochemical processes. In this study, high performance facilitated transport membrane (FTM) is used for propylene/propane separation. FTM module was prepared on top of porous polyetherimide hollow fiber using PVP/$AgBF_4$/TCNQ. We developed simulation program predicting the membrane separation properties under operation conditions. Separation properties of FTM module for propylene and propane were obtained from the simulation program based on the pure gas permeation data. Based on these results, it is predicted that an one-stage membrane process provides 99.5% of propylene at permeate side from a binary gas mixture of 95/5 vol% $C_3H_6$ / vol% $C_3H_8$ supplied as a feed gas.

본 연구에서는 석유화학공정 중에서 많은 에너지를 소비하는 NCC(Naphtha Cracking Center) $C_3$ splitter를 대신하여 에너지 소비가 적고 친환경 공정인 막분리법을 이용하여 프로필렌/프로판의 분리특성을 예측하고자 한다. 막소재로는 프로필렌/프로판 분리에 대하여 우수한 성능을 나타내는 것으로 잘 알려진 촉진수송막을 사용하였다. 실험에 사용된 촉진수송막은 한양대학교에서 제조한 은나노입자가 함유된 VP/$AgBF_4$/TCNQ 용액을 에어레인에서 다공성 폴리이서이미드 중공사에 얇게 코팅하여 소형 중공사 막모듈로 제작하였다. 제작된 촉진수송막 모듈의 투과성능을 평가하기 위하여 프로필렌과 프로판에 대한 단일기체 테스트를 진행하였다. 분리막의 투과현상을 예측하기 위하여 전산모사 프로그램을 개발하였다. 개발된 전산모사 프로그램에 단일기체 테스트를 통해 얻어진 투과도와 선택도를 이용하여 95/5 vol% $C_3H_6$ / vol% $C_3H_8$ 혼합가스를 공급하였을 경우, 공급측 및 투과측 압력 변화에 따른 투과측 프로필렌의 농도가 99.5 vol%를 유지하는 단일 분리막 공정을 설계하였다.

Keywords

References

  1. R. Faiz and K. Li, "Polymeric membranes for light olefin/paraffin separation", Desalination, 287, 82 (2012). https://doi.org/10.1016/j.desal.2011.11.019
  2. Greenhouse gas reduction technology strategic roadmap 2011, KETEP (2011).
  3. I. Pinnau and L. G. Toy, "Solid polyemr electrolyte composite membranes for olefin/paraffin separation", J. Membr. Sci., 184, 39 (2001). https://doi.org/10.1016/S0376-7388(00)00603-7
  4. Y. Pan, T. Li, G. Lestari, and Z. Lai, "Effective separation of propylene/propane binary mixtures by ZIF-8 membranes", J. Membr. Sci., 390, 93 (2012).
  5. Z. D. Pozun, K. Tran, A. Shi, R. H. Smith, and G. Henkelman, "Why Silver Nanoparticles Are Effective for Olefin/Paraffin Separation", J. Phys. Chem. C, 115, 1811 (2011). https://doi.org/10.1021/jp110579s
  6. M. Naghsh, M. Sdeghi, A. Moheb, M. P. Chenar, and M. Mohagheghian, "Separation of ethylene/ethane and propylene/propane by cellulose acetate-silica nanocomposite membranes", J. Membr. Sci., 423, 97 (2012).
  7. M. T. Ravanchi, T. Kaghazchi, and A. Kargari, "Separation of Propylene-Propane Mixture Using Immobilized Liquid Membrane via Facilitated Transport Mechanism", Sep. Sci. Technol., 44, 1198 (2009). https://doi.org/10.1080/01496390902729106
  8. M. T. Ravanchi, T. Kaghazchi, and A. Kargari, "Selective Transport of Propylene by Sliver Ion Complex Through an Immobilized Liquid Membrane", IRan. J. Chem. Eng., 7, 28 (2010). https://doi.org/10.1007/BF03246182
  9. R. L. Burns and W. J. Koros, "Defining the challenges for C3H6/C3H8 separation using polymeric membrane", J. Membr. Sci., 211, 299 (2003). https://doi.org/10.1016/S0376-7388(02)00430-1
  10. D. K. Ko, J. H. Kim, S. T. Chung, and Y. S. Kang, "Analysis of Facilitated Olefin Transport Through Polymer Electrolyte Membranes Containing Silver Salts", Membrane Journal, 13, 239 (2003).
  11. J. I. Lee, S. C. Jang, D. Y. Choi, J. H. Bang, H. S. Kim, and D. K. Choi, "Separation of Propylene/Propane using SPEEK-Ag+ Facilitated Transport Membrane", Korean Chem. Eng. Res., 46, 164 (2008).
  12. J. Shen, J. Qiu, L, Wu, and C. Gao, "Facilitated transport of carbon dioxide through poly(2-N,N-dimethylaminoethyl methacrylate-co-acrylic acid sodium) membrane", Sep. and Pur. Tech., 51, 345 (2006). https://doi.org/10.1016/j.seppur.2006.02.015
  13. Y. S. Kang, K. H. Cha, and S. W. Kang, "The facilitated olefin transporting composite membrane comprising nanosized silver metal and ionic liquid", KR 10-2006-0037430, May 3 (2007).
  14. Y. S. Kang, S. W. Kang, J. H. Kim, S. H. Moon, and J. H. Lee, "The facilitated olefin transporting composite membrane comprising nanosized silver oxide or copper oxide, and ionic liquid", Korea Patent 10-2008-0066670, June 29 (2010).
  15. Y. S. Kang, S. W. Kang, H. Kim, J. H. Kim, J. O. won, C. K. Kim, and K. H. Char, "Interaction with Olefins of the Partially Polarized Surface of Silver Nanoparticles Activated by p-Benzoquinone and Its Imlications for Facilitated Olefin Transport", Adv. Mater., 19, 475 (2007). https://doi.org/10.1002/adma.200601009
  16. J. H. Koh, S. W. Kang, J. T. Park, J. A. Seo, J. H. Kim, and Y. S. Kang, "Synthesis of silver halide nanocomposites templated by amphiphilic graft copolymer and their use as olefin carrier for facilitated transport membranes", J. Membr. Sci., 339, 49 (2009). https://doi.org/10.1016/j.memsci.2009.04.023
  17. I. S. Chae, S. W. Kang, J. Y. Park, Y. G. Lee, J. H. Lee, J. O. Won, and Y. S. Kang, "Surface Energy-Level Tuning of Silver Nanoparticles for Facilitated Olefin Transport", Angewandte Chemie International Edition, 50, 2982 (2011). https://doi.org/10.1002/anie.201007557
  18. W. L. McCabe, J. C. Smith, and P. Harriott, "Unit operations of chemical engineering", pp. 846-853, McGraw-Hill International Editions, Singapore (1993).