DOI QR코드

DOI QR Code

Preparation of Disulfonated Poly(arylene ether sulfone) Random Copolymer Thin Film Composite Membranes Using a Benign Solvent

친환경용매 기반의 술폰화 폴리아릴렌 에테르 술폰 랜덤 공중합체 Thin Film Composite 제조

  • Lee, Chang Hyun (Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University) ;
  • McGrath, James E. (Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University) ;
  • Freeman, Benny (Department of Chemical Engineering, Center for Energy and Environmental Resources, University of Texas at Austin)
  • Received : 2014.07.03
  • Accepted : 2014.08.19
  • Published : 2014.08.30

Abstract

Chlorine-resistant sulfonated poly(arylene ether sulfone) random copolymer (SPAES)-thin film composite (TFC) membranes for desalination are prepared using monoglyme as a selective solvent, which dissolves SPAES, but should be inert to porous polysulfone layer (e.g., Udel$^{(R)}$). Different from formic acid and diethylene glycol used as other selective solvents, monoglyme is environmentally friendly and has much lower boiling temperature. After a pretreatment of Udel$^{(R)}$ support film in isopropyl alcohol-glycerine mixture to minimize pore penetration leading to fairly reduced water flux, coating of SPAES solution in monoglyme onto the support and stepwise drying processes are conducted for defect-free TFC formation. The transport behavior through SPAES-TFC membranes is observed, correlating with the effects of sulfonation level, protonation, and physical and chemical crosslinking of SPAES selective layers.

내염소성을 갖는 염제거공정용 술폰화 폴리아릴렌 에테르 술폰 랜덤 공중합체(SPAES) thin film composite (TFC)막이 모노글라임 용매를 이용하여 제조되었다. 모노글라임은 선택층인 SPAES만을 용해시키며, 다공성 폴리술폰(예 : Udel$^{(R)}$)층에 대해 비용해성을 지녀, TFC 제조를 위한 선택적 용매로 사용될 수 있다. 또한 개미산이나 디에틸글리콜과는 달리, 환경적으로 무해하며, 매우 낮은 끊는점을 지녔다는 점이 또 다른 장점이 될 수 있다. 다공성 Udel$^{(R)}$ 지지체 위에 코팅시, 코팅용액이 기공구조에 침투하여 유수량을 감소시키는 기공투과현상이 발생하는데, 이를 최소화하기 위해 지지체를 이소프로필알콜과 글리세린 혼합액에서 전처리 후에, 코팅-건조 공정을 통해 결함이 없는 SPAES TFC로 제조된다. 또한, SPAES 선택층의 술폰화도, 고정이온의 염상태 및 물리-화학적 가교효과를 SPAES TFC막을 통한 투과거동과 관련하여 관찰하였다.

Keywords

References

  1. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative polymer systems for proton exchange membranes (PEMs)", Chemical Reviews, 104, 4587-4612 (2004). https://doi.org/10.1021/cr020711a
  2. K. Yoon, J. H. Choi, J .K. Choi, S. K. Hong, Y. T. Hong, and H. Byun, "Fabrication and characterization of partially covalent-crosslinked poly(arylene ether sulfone)s for use in a fuel cell", Membrane Journal, 18, 274-281 (2008).
  3. K. K. Lee, T. H. Kim, T. S. Hwang, and Y. T. Hong, "Novel Sulfonated Poly(arylene ether sulfone) Composite Membranes Containing Tetraethyl Orthosilicate (TEOS) for PEMFC Applications", Membrane Journal, 20, 278-289 (2010).
  4. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membrane Journal, 21, 389-397 (2011).
  5. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Progress in Polymer Science, 36, 1443-1498 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  6. J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, K. Nymeijer, and C. J. N. Buisman, "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis", Journal of Membrane Science, 288, 218-230 (2007). https://doi.org/10.1016/j.memsci.2006.11.018
  7. H. B. Park, B. D. Freeman, Z.-B. Zhang, M. Sankir, and J. E. McGrath, "Highly Chlorine-Tolerant Polymers for Desalination", Angewandte Chemie International Edition, 47, 6019-6024 (2008). https://doi.org/10.1002/anie.200800454
  8. G. M. Geise, H.-S. Lee, D. J. Miller, B. D. Freeman, J. E. McGrath, and D. R. Paul, "Water purification by membranes: The role of polymer science", Journal of Polymer Science Part B: Polymer Physics, 48, 1685-1718 (2010). https://doi.org/10.1002/polb.22037
  9. C. H. Lee, D. VanHouten, O. Lane, J. E. McGrath, J. Hou, L.A. Madsen, J. Spano, S. Wi, J. Cook, W. Xie, H. J. Oh, G. M. Geise, and B. D. Freeman, "Disulfonated Poly(arylene ether sulfone) Random Copolymer Blends Tuned for Rapid Water Permeation via Cation Complexation with Poly(ethylene glycol) Oligomers", Chemistry of Materials, 23, 1039-1049 (2011). https://doi.org/10.1021/cm1032173
  10. T. Knoell, "Municipal wastewater: chlorine's impact on the performance and properties of polyamide membranes", Ultrapure Water, 23, 24-31 (2006).
  11. G. M. Geise, H. B. Park, A. C. Sagle, B. D. Freeman, and J. E. McGrath, "Water permeability and water/salt selectivity tradeoff in polymers for desalination", Journal of Membrane Science, 369, 130-138 (2011). https://doi.org/10.1016/j.memsci.2010.11.054
  12. W. Xie, J. Cook, H. B. Park, B. D. Freeman, C. H. Lee, and J. E. McGrath, "Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers", Polymer, 52, 2032-2043 (2011). https://doi.org/10.1016/j.polymer.2011.02.006
  13. C. H. Lee, K.-S. Lee, O. Lane, J. E. McGrath, Y. Chen, S. Wi, S. Y. Lee, and Y. M. Lee, "Solvent-assisted thermal annealing of disulfonated poly(arylene ether sulfone) random copolymers for low humidity polymer electrolyte membrane fuel cells", RSC Advances, 2, 1025 (2012). https://doi.org/10.1039/C1RA00681A
  14. C. H. Lee, W. Xie, D. VanHouten, J. E. McGrath, B. D. Freeman, J. Spano, S. Wi, C. H. Park, and Y. M. Lee, "Hydrophilic silica additives for disulfonated poly(arylene ether sulfone) random copolymer membranes", Journal of Membrane Science, 392-393, 157-166 (2012). https://doi.org/10.1016/j.memsci.2011.12.015
  15. M. Paul, H. B. Park, B. D. Freeman, A. Roy, J. E. McGrath, and J. S. Riffle, "Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes", Polymer, 49, 2243-2252 (2008). https://doi.org/10.1016/j.polymer.2008.02.039
  16. C. H. Lee, B. D. McCloskey, J. Cook, O. Lane, W. Xie, B. D. Freeman, Y. M. Lee, and J. E. McGrath, "Disulfonated poly(arylene ether sulfone) random copolymer thin film composite membrane fabricated using a benign solvent for reverse osmosis applications", Journal of Membrane Science, 389, 363-371 (2012). https://doi.org/10.1016/j.memsci.2011.11.001
  17. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, Merck Research Laboratories, Division of Merck & Co., Inc., Whitehouse station, NJ (1996).
  18. The Physical and Theoretical Chemistry Laboratory (Ed.): Chemical and Other Safety Information in, Oxford University (2011).
  19. K. E. Kinzer, D. R. Lloyd, J. P. Wightman, and J. E. McGrath, "Asymmetric membrane preparation from nonsolvent casting systems", Desalination, 46, 327-334 (1983). https://doi.org/10.1016/0011-9164(83)87172-0