DOI QR코드

DOI QR Code

The Study on Optimum Operation Conditions of Ceramic MF Membrane Process in Y Water Treatment Plant

Y 정수장 세라믹막 여과공정 최적 운영인자 평가

  • You, Sang-Jun (Gyeongnam-Busan Regional Division, K-water) ;
  • Ahn, Hyo-Won (Gyeongnam-Busan Regional Division, K-water) ;
  • Park, Sung-Han (Gyeongnam-Busan Regional Division, K-water) ;
  • Lim, Jae-Lim (Water Research Center, K-water Institute) ;
  • Hong, Sung-Chul (Department of Bioenvironmental Energy, Pusan National University) ;
  • Yi, Pyong-In (Department of Bioenvironmental Energy, Pusan National University)
  • 유상준 (K-water 경남부산지역본부) ;
  • 안효원 (K-water 경남부산지역본부) ;
  • 박성한 (K-water 경남부산지역본부) ;
  • 임재림 (K-water 연구원) ;
  • 홍성철 (부산대학교 바이오환경에너지학과) ;
  • 이병인 (부산대학교 바이오환경에너지학과)
  • Received : 2014.04.09
  • Accepted : 2014.05.29
  • Published : 2014.06.30

Abstract

This study was performed to discover the optimum operation conditions for the advanced water treatment using the ceramic membrane, introduced the first in the nation at the Y water treatment plant (WTP). The result of investigation to find the optimum operation conditions which can continue preserving the filtration performance as well as satisfying both the economics and the water quality is as follows. In the ordinary water quality condition of the Y WTP, the optimum filtration time(the backwash period), which can minimize the production of backwash waste and preserve the membrane performance was examined to be 4.0 hours on basis of institution capacity ($16,000m^3/day$). Examining the recovery rate of TMP from the chemical cleaning (CIP) discovered that the inorganic contaminants, which cause membrane fouling, such as iron, manganese, aluminum, were removed through the acidic cleaning using citric acid, whereas the membrane recovery rate was found to be low. But, on the other hand, the TMP was recovered to the initial value from the alkali cleaning using the NaOCl. Therefore, the main contaminant causing the fouling was determined to be hydrophilic organic compound( biopolymer). The membrane recovery rate is highly influenced by the temperature of the cleaning chemical. That is, the rate increased with increasing temperature.

본 연구는 국내 최초로 도입된 Y 정수장의 세라믹막 고도정수처리를 위한 최적 운영 인자를 도출하기 위하여 수행되었다. 경제성과 수질조건을 만족하면서도 세라믹막 여과성능을 지속 유지할 수 있는 최적 운영조건을 도출한 결과, Y 정수장의 평상시 수질 조건에서 막역세척으로 인한 배출수 발생량을 최소화시키면서도 막여과성능을 유지할 수 있는 최적 여과지속시간(역세척 주기)은 시설용량($16,000m^3$/일) 기준 시 4.0시간으로 조사되었다. 또한 화학세척(CIP)에 따른 막차압 회복력을 조사한 결과, 구연산을 이용한 산세정을 통하여 철, 망간, 알루미늄 등의 막 파울링을 일으키는 무기오염물질은 제거되지만 막회복률은 낮았다. 반면 차아염소산나트륨을 사용한 알칼리 세정을 통해서는 막 운영 초기 막차압으로 회복되는 것으로 나타났다. 막차압을 발생시키는 파울링 주요 원인물질은 친수성 고분자 유기오염물인 polysaccharides로 조사되었으며, 화학세척(CIP)시 막성능 회복률은 세척약품 온도에 의한 영향이 매우 크며, 온도가 높은수록 막성능 회복률이 향상되는 것으로 조사되었다.

Keywords

References

  1. Y. T. Lee and M. H. Song, "Characteristics of the Concentration Process of Lactobacillus Cell Using a Ceramic Membrane", Membrane Journal, 14, 192 (2004).
  2. A. Grenier, M. Meireles, P. Aimar, and P. Carvin, "Analysing flux decline in dead-end filtration", Chem. Eng. Res. des., 86, 1281 (2008). https://doi.org/10.1016/j.cherd.2008.06.005
  3. J. H. Kweon, Y. H. Choi, S. H. Lee, and K. H. Ahn, "Coagulation Characteristics of a Natural Water and the Effects on Microfiltration", Proceedings of the Autumn Co-Conference of the Korean Society on Water Environment and Korean Society of Water and Wastewater, 41 (2004).
  4. K. J. Howe and M. M. Clark, "Coagulation pretreatment for membrane filtration", AWWARF, Denver, USA (2002).
  5. Kerry J. Howe and Mark M. Clark, "Effect of coagulation pretreatment on membrane filtration performance", Journal AWWA, 133 (2006).
  6. H. Yonekawa, Y. Tomita, and Y. Watanabe, "Behavior of Micro-particles in Monolith Ceramic Membrane Filtration with Pre-coagulation", Water Sci. Technol., 50, 317 (2004).
  7. H. C. Lee and J. Y. Park, "Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Microfiltration and Activated Carbon Adsorption : Effect of Water-back-flushing Time and Period", Membrane Journal, 19, 7 (2009).
  8. K. H. Choo, H. B Lee, and S. J. Choi "Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment", J. Membr. Sci., 267, 18 (2005). https://doi.org/10.1016/j.memsci.2005.05.021
  9. C. Liu, S. Cathien, J. Hayes, T. Caothuy, T. Otoyo, and T. Ogawa, "Membrane chemical cleaning:from art to science", Proc. AWWA Membrane Technology Conference, San Antonio, USA (2001).
  10. C. J. Gabelich, K. P. Ishida, and F. W. Gerringer, "Control of residual aluminum from conventional treatment to improve reverse osmosis performance", Desalination, 190, 147 (2006). https://doi.org/10.1016/j.desal.2005.09.002
  11. S. T. Kelly and A. L. Zydney, "Mechanisms for BSA fouling during microfiltration", J. Membr. Sci., 107, 115 (1995). https://doi.org/10.1016/0376-7388(95)00108-O
  12. X. Zheng, M. Ernst, P. M. Huck, and M. Jekel, "Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater", Water Res., 44, 5212 (2010). https://doi.org/10.1016/j.watres.2010.06.039
  13. B. G. Lee, H. J. Son, J. S. Roh, Y. D. Hwang, C. W. Jung, and L. S. Kang, "Effect of Fractionated Organic Matter on Membrane Fouling", J. Korean Soc. Environ. Eng., 27, 1321 (2005).
  14. R. Alazmi, V. Nassehi, and R. Wakeman, "Calcium cation interactions with polysaccharides and proteins in wastewater UF membrane fouling", Membrane Technology, 2010, 6 (2010).
  15. J. L. Lim, K. H. Lee, Y. J. Lee, and J. Y. Park, "Optimum Chemical Cleaning Conditions for Ceramic Microfiltration Membrane Process" Membrane Journal, 22, 461 (2012).
  16. Y. Bessiere, P. Bacchin, and B. Jefferson, "Dead End Filtration Of Natural Organic Matter: Experimental Evidence of Critical Conditions," Desalination, 175, 29 (2005). https://doi.org/10.1016/j.desal.2004.09.021
  17. C. W. Jung and H. J. Son, "Effects of Membrane Size and Organic Matter on Membrane Fouling", J. Korean Soc. of Environ. Eng., 28, 1046 (2006).
  18. K. Katsoufidou, S. G. Yiantsios, and A. J. Karabelas, "An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery", Desalination, 220, 214 (2008). https://doi.org/10.1016/j.desal.2007.02.038
  19. G. Amy and J. Cho, "Interactions between natural organic matter (NOM) and membranes : rejection and fouling", Water Sci. Technol., 40, 131 (1999).
  20. S. Strugholtz, K. Sundaramoorthy, S. Panglisch, A. Lerch, A. Brugger, and R. Gimbel, "Evaluation of the performance of different chemicals for cleaning capillary membranes", Desalination, 179, 191 (2005). https://doi.org/10.1016/j.desal.2004.11.067