DOI QR코드

DOI QR Code

Effect of Nylon/Aramid Filaments Characteristics on the Physical Property of Air Textured Yarns for Protective Garment

Nylon/아라미드 원사특성이 방호의류용 에어텍스쳐사의 물성에 미치는 영향

  • 김현아 (한국패션산업연구원 연구개발본부)
  • Received : 2014.07.08
  • Accepted : 2014.08.25
  • Published : 2014.09.30

Abstract

This study investigated the physical properties of aramid/nylon ATY and aramid ATY for protective garments according to the aramid and nylon characteristics fed on the core and effect components of air jet texturing equipment. Tenacity decrease of aramid ATY was much more higher than that of nylon ATY because of slick of aramid filament surface. Tenacity of aramid/nylon ATY was most affected by the tenacity of nylon on the effect component of ATY. Breaking strain of nylon ATY was two times higher than that of nylon before air jet texturing, then, in case of aramid ATY and aramid/nylon ATY, were 5.9-6.7 times higher than those before air jet texturing. Initial modulus decrease of aramid ATY showed 86.5% of initial modulus of aramid before air jet texturing, then aramid/nylon hibrid ATY showed arithmetic average value of initial modulus of aramid and nylon ATY. Wet and dry thermal shrinkages of aramid/nylon hybrid ATY were dominated by those of nylon filament on the effect component of ATY.

본 연구는 에어제트텍스쳐링 장치에서 공급되는 코어사와 이펙트사인 아라미드와 나일론의 구성이 방호의류용 아라미드/나일론 ATY와 아라미드 ATY의 물성변화에 대한 연구이다. 아라미드 필라멘트 표면의 매끄러움 때문에 아라미드 ATY의 강도 저하는 나일론 ATY에 비해 훨씬 높았다. 아라미드/나일론 ATY 강도는 ATY의 이펙트사인 나일론의 강도에 가장 영향을 많이 받았다. 나일론 ATY의 절단신도는 에어제트텍스쳐링 이전의 나일론에 비해 두 배정도 높은 값을 나타내었으며, 아라미드 ATY와 아라미드/나일론 ATY는 에어제트텍스쳐링 이전에 비해 5.9~6.7배 정도로 높았다. 아라미드 ATY의 초기탄성률은 아라미드의 에어제트텍스쳐링 이전에 비해 86.5%정도 감소하였으며, 아라미드/나일론 ATY의 초기탄성률은 아라미드 ATY와 나일론 ATY 초기탄성률의 산술평균치를 나타내었다. 아라미드/나일론 하이브리드 ATY의 습 건열 수축률은 나일론의 영향을 받음을 알 수 있었다.

Keywords

References

  1. Acar, M., & Wray, G. R. (1986). An analysis of the air-jet yarn-texturing process part : The effect of wetting the yarns, Journal of The Textile Institute, 77(6), 359-370. https://doi.org/10.1080/00405008608658432
  2. Chaithanya, R. (2002). Relationship between the processing parameters and tensile properties of air textured Kevlar yarns, Unpublished master's thesis, North Carolina State University, North Carolina.
  3. Choi, L. H., Kim, H. A. & Kim, S. J. (2013). Physical properties of aramid and aramid/nylon hybird ATY for protective garments relative to ATY nozzle diameter (ATY 노즐 직경에 따른 방호의류용 아라미드와 아라미드/나일론 하이브리드 ATY사의 물성변화), Fashion & Tex. Res. J., 15(3), 437-443. https://doi.org/10.5805/SFTI.2013.15.3.437
  4. Dani, N. (2004). The fundamentals of air-jet texturing, Unpublished doctoral dissertation, North Carolina State University, US.
  5. Demir, A., Acar, M., & Wray, G. R. (1986). Instability tests for air-jet textured yarns. Textile Research Journal, 56(3), 191-202. https://doi.org/10.1177/004051758605600306
  6. Kim, S. J., Park, M. R., Choi, R. H. & Ma, H. Y. (2011). The effect of the ATY processing condition on the physical properties of para-aramid/nylon hybrid fliament (건․습 텍스쳐링 가공조건이 방호의류용 Aramid ATY와 Aramid/Nylon hybrid 사의 물성에 미치는 영향), The 40th Textile Research Symposium, Kyoto(Japan).
  7. Kothari, V. K., Sengupta, A. K., & Goswami, B. C. (1991a). Role of water in air-jet texturing part I: Polyester filament feeder yarns with different frictional characteristics, Textile Research Journal, 61(9), 495-502. https://doi.org/10.1177/004051759106100901
  8. Kothari, V. K., Sengupta, A. K., & Goswami, B. C. (1991b). Role of water in air-jet texturing part II: Nylon 6 yarns conditioned in different environments, Textile Research Journal, 61(10), 575-580. https://doi.org/10.1177/004051759106101003
  9. Manich, A. M., Maillo, J., Cayuela, D., Gacen, J., Castellar, M. D., & Ussman, M. (2007). The effects of texturing induced microstructural changes on the relaxation behaviour of polyamide 66 multifilament yarns, Fibers and Polymers, 8(5), 512-519. https://doi.org/10.1007/BF02875874
  10. Park, M. R., Choi, L. H., Ma, H. Y. & Kim, S. J. (2012). Physical property of para-aramdi/nylon hybrid filament according to the ATY processing condition, Asian Textile Conference-11, Daegu, Exco(Korea).
  11. Park, M. R., Kim, H. A. & Kim, S. J. (2013). Physical properties of aramid and aramid/nylon hybrid ATY for Protective garments according to the dry and wet texturing conditions (건․습 텍스쳐링 가공조건이 방호의류용 Aramid ATY와 Aramid/Nylon hybrid 사의 물성에 미치는 영향), Fashion & Tex. Res. J., 15(3), 444-450. https://doi.org/10.5805/SFTI.2013.15.3.444
  12. Rengasamy, R. S., Kothari, V. K., & Patnaik, A. (2004). Effect of process variables and feeder yarn properties on the properties of core-and-effect and normal air-jet textured yarns. Textile Research Journal, 74(3), 259-264. https://doi.org/10.1177/004051750407400313
  13. Sengupta, A. K., Chatopadhyay, R., & Sensarma, J. K. (1992). Air-jet texturing of sirospun yarn. Textile Research Journal, 62(6), 328-334.
  14. Sengupta, A. K., Kothari, V. K., & Sensarma, J. K. (1996). Effect of filament modulus and linear density on the properties air-jet textured yarns. Textile Research Journal, 66(7), 452-455. https://doi.org/10.1177/004051759606600706
  15. Zhang, J., Zhang, Z., Wang, S., & Qin, X. (2007). Investigation on air texturing process for diacetate blending with polyester filaments. Fibers and Polymers, 8(4), 427-431. https://doi.org/10.1007/BF02875833
  16. Zhang, J., Zhang, Z., Wang, S., & Qin, X. (2007). Properties of core-and-effect air textured yarns blended by diacetate and polyester filament. Fibers and Polymers, 8(1), 84-88. https://doi.org/10.1007/BF02908164