DOI QR코드

DOI QR Code

The Secondary Contiguous or Non-contiguous Subchondral Bone Impactions in Subaxial Cervical Spinal Injury: Incidence and Associated Primary Injury Patterns

축추이하 경추 손상에서 이차적으로 발생하는 연속적, 비연속적 연골하골 압박손상의 빈도와 원발부위 손상 패턴

  • Han, Jun Gu (Department of Radiology, Inha University Hospital) ;
  • Kim, Yeo Ju (Department of Radiology, Inha University Hospital) ;
  • Yoon, Seung Hwan (Department of Neurosurgery, Inha University Hospital) ;
  • Cho, Kyu Jung (Department of Orthopedics, Inha University Hospital) ;
  • Kim, Eugene (Department of Radiology, Inha University Hospital) ;
  • Kang, Young-Hye (Department of Radiology, Inha University Hospital) ;
  • Lee, Ha Young (Department of Radiology, Inha University Hospital) ;
  • Cho, Soon Gu (Department of Radiology, Inha University Hospital) ;
  • Kim, Mi Young (Department of Radiology, Inha University Hospital)
  • Received : 2014.07.17
  • Accepted : 2014.09.03
  • Published : 2014.09.30

Abstract

Purpose : To evaluate the incidence of secondary contiguous or non-contiguous subchondral bone impactions (SBI) in subaxial cervical spinal injury and associated primary injury patterns. Materials and Methods: A retrospective review of computed tomography, magnetic resonance imaging, and medical records was carried out for 47 patients who had sustained a subaxial cervical spinal injury. Presence, number, level, and sites of secondary contiguous or non-contiguous SBI were recorded. To evaluate primary injury patterns, the level and number of primary injury sites of subaxial cervical spine injury, injury morphology, anterior/posterior discoligamentous complex (ADC/PDC) injury, posterior ligamentous complex (PLC) injury, spinal cord injury, and mechanism of injury (MOI) were analyzed. Differences in primary injury pattern of subaxial cervical spine injury and MOI between patients with and without SBI, and between contiguous or non-contiguous SBI were analyzed using the Mann-Whitney U test, Pearson's chi square test and Fisher's exact test. Results: Eighteen patients (18/47, 38.29%) had developed contiguous (n=9) or non-contiguous (n=9) SBI, most commonly involving T3 (15/47, 31.91%) and 3 levels (6/18, 33.33%). All SBIs had developed near the anterosuperior region of the body and the superior endplate and were the result of a high-impact MOI. SBIs were statistically significant in association with injury morphology and PLC injury (P=0.001, P=0.009, respectively) at the primary injury site. Non-contiguous SBI was more frequently accompanied by upper cervical spinal injuries in association with PDC injuries, as opposed to contiguous SBI, with statistical significance (P=0.009), while no other statistically significant differences were found. Conclusion: Secondary SBIs are common and probably associated with subaxial cervical spinal injuries with high energy compressive flexion forces.

목적: 축추이하 경추 손상시 발생하는 연속적, 비연속적 연골하골 압박손상의 빈도와 원발부위 손상 패턴에 대해 알아보고자 하였다. 대상과 방법: 축추이하 경추 손상이 있는 환자 47명의 전산화 단층촬영, 자기공명영상, 의무기록을 후향적으로 검토하여 연속적, 비연속적 연골하골 압박손상의 발생유무와 수, 레벨, 손상 부위를 기록하였다. 원발부위 손상 패턴을 알아보기 위하여 손상된 원발부위의 레벨, 수, 손상 형태, 전/후방 추간판인대복합체의 손상유무, 후방인대복합체의 손상유무, 척수 손상유무를 분석하고 손상 기전을 분석하였다. 분석된 원발손상 패턴과 손상기전은 Mann-Whitney U test, Pearson's chi square test, Fisher's exact test의 통계적 기법으로 연골하 압박손상의 발생유무와 연관성을 조사하였다. 결과: 총 18명에게서 (18/47, 38.29%) 연골하 압박손상이 발생했으며 그 중 9명은 원발부위와 인접하여 연속적으로, 다른 9명은 원발부위와 떨어져 비연속적으로 발생하였다. 3번 흉추에 가장 흔하게 발생하였고 (15/47, 31.91%), 세 개의 레벨에 걸쳐있는 경우가 가장 많았다 (6/18, 33.33%). 모든 연골하 압박손상은 척추체의 전상방 부위나 상종판 주변에 발생하였으며 강한 외력의 외상과 연관되었다. 연골하 압박손상의 발생은 원발부위의 손상형태와 후방인대복합체의 손상과 통계학적으로 유의한 연관성을 보였다. 비연속적 연골하 압박손상은 연속적 연골하 압박손상에 비해 비교적 상부 경추에 원발 손상부위가 있고 후방추간판인대 복합체의 손상을 동반하는 경우가 통계학적으로 유의하게 많았다. 그외 분석한 다른 인자들은 통계학적으로 유의한 결과를 보이지 않았다. 결론: 이차성 연골하 압박손상은 흔하며 강한 외력에 의한 굴곡압박성 경추 외상과 관련 있을 것이다.

Keywords

References

  1. Griffith HB, Gleave JR, Taylor RG. Changing patterns of fracture in the dorsal and lumbar spine. Br Med J 1966;1:891-894 https://doi.org/10.1136/bmj.1.5492.891
  2. Bentley G, McSweeney T. Multiple spinal injuries. Br J Surg 1968;55:565-570 https://doi.org/10.1002/bjs.1800550802
  3. Kewalramani LS, Taylor RG. Multiple non-contiguous injuries to the spine. Acta Orthop Scand 1976;47:52-58 https://doi.org/10.3109/17453677608998972
  4. Calenoff L, Chessare JW, Rogers LF, Toerge J, Rosen JS. Multiple level spinal injuries: importance of early recognition. AJR Am J Roentgenol 1978;130:665-669 https://doi.org/10.2214/ajr.130.4.665
  5. Korres DS, Katsaros A, Pantazopoulos T, Hartofilakidis- Garofalidis G. Double or multiple level fractures of the spine. Injury 1981;13:147-152 https://doi.org/10.1016/0020-1383(81)90050-4
  6. Tearse DS, Keene JS, Drummond DS. Management of noncontiguous vertebral fractures. Paraplegia 1987;25:100-105 https://doi.org/10.1038/sc.1987.18
  7. Gupta A, el Masri WS. Multilevel spinal injuries. Incidence, distribution and neurological patterns. J Bone Joint Surg Br 1989;71:692-695 https://doi.org/10.2106/00004623-198971050-00008
  8. Keenen TL, Antony J, Benson DR. Non-contiguous spinal fractures. J Trauma 1990;30(4):489-91. Epub 1990/04/01 https://doi.org/10.1097/00005373-199030040-00022
  9. Henderson RL, Reid DC, Saboe LA. Multiple noncontiguous spine fractures. Spine (Phila Pa 1976). 1991;16:128-131 https://doi.org/10.1097/00007632-199116020-00005
  10. Vaccaro AR, An HS, Lin S, Sun S, Balderston RA, Cotler JM. Noncontiguous injuries of the spine. J Spinal Disord 1992;5:320-329 https://doi.org/10.1097/00002517-199209000-00010
  11. Green RA, Saifuddin A. Whole spine MRI in the assessment of acute vertebral body trauma. Skeletal Radiol 2004;33:129-135 https://doi.org/10.1007/s00256-003-0725-y
  12. Qaiyum M, Tyrrell PN, McCall IW, Cassar-Pullicino VN. MRI detection of unsuspected vertebral injury in acute spinal trauma: incidence and significance. Skeletal Radiol 2001;30:299-304 https://doi.org/10.1007/s002560100329
  13. Eustace S, Keogh C, Blake M, Ward RJ, Oder PD, Dimasi M. MR imaging of bone oedema: mechanisms and interpretation. Clinical Radiology 2001;56:4-12 https://doi.org/10.1053/crad.2000.0585
  14. Teli M, de Roeck N, Horwitz MD, Saifuddin A, Green R, Noordeen H. Radiographic outcome of vertebral bone bruise associated with fracture of the thoracic and lumbar spine in adults. Eur Spine J 2005;14:541-545 https://doi.org/10.1007/s00586-004-0786-1
  15. Sanders TG, Medynski MA, Feller JF, Lawhorn KW. Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics 2000;20:S135-151 https://doi.org/10.1148/radiographics.20.suppl_1.g00oc19s135
  16. Sijbrandij ES, van Gils AP, Louwerens JW, de Lange EE. Posttraumatic subchondral bone contusions and fractures of the talotibial joint: occurrence of "kissing" lesions. AJR Am J Roentgenol 2000;175:1707-1710 https://doi.org/10.2214/ajr.175.6.1751707
  17. Vaccaro AR, Hulbert RJ, Patel AA, et al. The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex. Spine (Phila Pa 1976) 2007;32:2365-2374 https://doi.org/10.1097/BRS.0b013e3181557b92
  18. Aarabi B, Walters BC, Dhall SS, et al. Subaxial cervical spine injury classification systems. Neurosurgery 2013;72:170-186
  19. Goradia D, Linnau KF, Cohen WA, Mirza S, Hallam DK, Blackmore CC. Correlation of MR imaging findings with intraoperative findings after cervical spine trauma. AJNR Am J Neuroradiol 2007;28:209-215
  20. Demaerel P. Magnetic resonance imaging of spinal cord trauma: a pictorial essay. Neuroradiology 2006;48:223-232 https://doi.org/10.1007/s00234-005-0039-y
  21. Bohndorf K. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skeletal Radiol 1999;28:545-560 https://doi.org/10.1007/s002560050618
  22. Delgado Almandoz JE, Schaefer PW, Kelly HR, Lev MH, Gonzalez RG, Romero JM. Multidetector CT angiography in the evaluation of acute blunt head and neck trauma: a proposed acute craniocervical trauma scoring system. Radiology 2010;254:236-244 https://doi.org/10.1148/radiol.09090693
  23. Choi SJ, Shin MJ, Kim SM, Bae SJ. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI. Korean J Radiol 2004;5:219-224 https://doi.org/10.3348/kjr.2004.5.4.219
  24. Panjabi MM, White AA, 3rd. Basic biomechanics of the spine. Neurosurgery 1980;7:76-93 https://doi.org/10.1227/00006123-198007000-00014
  25. Allen BL Jr., Ferguson RL, Lehmann TR, O'Brien RP. A mechanistic classification of closed, indirect fractures and dislocations of the lower cervical spine. Spine (Phila Pa 1976) 1982;7:1-27 https://doi.org/10.1097/00007632-198200710-00001
  26. Rihn JA, Fisher C, Harrop J, Morrison W, Yang N, Vaccaro AR. Assessment of the posterior ligamentous complex following acute cervical spine trauma. J Bone Joint Surg Am 2010;92:583-589 https://doi.org/10.2106/JBJS.H.01596