DOI QR코드

DOI QR Code

임의의 위치에서 사용 가능한 영상 기반 변위 계측 시스템

Vision-Based Displacement Measurement System Operable at Arbitrary Positions

  • 이준화 (울산과학기술대학교) ;
  • 조수진 (울산과학기술대학교 도시환경공학부) ;
  • 심성한 (울산과학기술대학교 도시환경공학부)
  • 투고 : 2014.05.14
  • 심사 : 2014.07.18
  • 발행 : 2014.11.30

초록

본 연구에서는 카메라의 위치에 상관없이 정확하게 구조물의 변위를 측정할 수 있는 영상 기반 변위 계측 시스템을 제안하였다. 기존의 영상 기반 변위 계측 시스템은 카메라의 각도에 따라 오차를 유발하며, 그에 따라 대형 구조물에서 적용성에 제한되는 단점이 존재하였다. 본 시스템은 네 개의 점이 그려진 측정판을 변위를 측정하고자 하는 구조물의 위치에 부착하여 카메라로 촬영한 뒤 영상을 해석하여 변위를 얻는다. 측정판과 카메라의 각도에 무관하게 구조물의 변위를 얻기 위하여, 이미지 좌표계와 세계 좌표계 상의 두 평면간의 대응관계를 표현하는 평면 호모그래피 기법을 활용하였다. 성능 검증을 위하여 소형 구조물을 이용한 실내실험을 수행하였으며, 어떠한 각도에서 촬영하더라도 실제 변위를 정확하게 측정할 수 있음을 보였다.

In this study, a vision-based displacement measurement system is developed to accurately measure the displacement of a structure with locating the camera at arbitrary position. The previous vision-based system brings error when the optical axis of a camera has an angle with the measured structure, which limits the applicability at large structures. The developed system measures displacement by processing the images of a target plate that is attached on the measured position of a structure. To measure displacement regardless of the angle between the optical axis of the camera and the target plate, planar homography is employed to match two planes in image and world coordinate systems. To validate the performance of the present system, a laboratory test is carried out using a small 2-story shear building model. The result shows that the present system measures accurate displacement of the structure even with a camera significantly angled with the target plate.

키워드

참고문헌

  1. Castellini, P., Martarelli, M., and Tomasini, E. P. (2006), Laser Doppler Vibrometry: Development of advanced solutions answering to technology's needs, Mechanical Systems and Signal Processing, 20(6), 1265-1285. https://doi.org/10.1016/j.ymssp.2005.11.015
  2. Fukuda, Y., Feng, M., Narita, Y., Kaneko, S. I., and Tanaka, T. (2013), Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm, IEEE Sensors Journal, 13(12), 1928-1931.
  3. Ji, Y. F. and Chang, C. C. (2008). Nontarget stereo vision technique for spatiotemporal response measurement of line-like structures, Journal of Engineering Mechanics, 134(6), 466-474. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(466)
  4. Jo, H., Sim, S. H., Tatkowski, A., Spencer, B. F., and Nelson, M. E. (2013), Feasibility of displacement monitoring using low-cost GPS receivers, Structural Control and Health Monitoring, 20(9), 1240-1254. https://doi.org/10.1002/stc.1532
  5. Kim, S. W., Jeon, B. G., Kim, N. S., and Park, J. C. (2013), Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge, Structural Health Monitoring, 12(5-6), 440-456. https://doi.org/10.1177/1475921713500513
  6. Lee, H. S., Hong, Y. H., and Park, H. W. (2010), Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures, International Journal for Numerical Methods in Engineering, 82(4), 403-434. https://doi.org/10.1002/nme.2769
  7. Lee, J. J., and Shinozuka, M. (2006), A vision-based system for remote sensing of bridge displacement, Ndt & E International, 39(5), 425-431. https://doi.org/10.1016/j.ndteint.2005.12.003
  8. Lee, J. J., Fukuda, Y., Shinozuka, M., Cho, S., and Yun, C. (2007), Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures, Smart Structures and Systems, 3(3), 373-384. https://doi.org/10.12989/sss.2007.3.3.373
  9. Park, J. W., Sim, S. H., and Jung, H. J. (2013), Displacement estimation using multimetric data fusion, IEEE/ASME Trans, Mechatronics, 18(6), 1675-1682. https://doi.org/10.1109/TMECH.2013.2275187
  10. Shin, S., Yun, B. G., and Kim, J. C. (2009), Estimation of dynamic displacements of a bridge using FBG sensors, Journal of Korea institute for Structural Maintenance Inspection, KSMI, 13(3), 101-109 (in Korean, with English abstract).
  11. Simon, G., Fitzgibbon, A. W., and Zisserman, A. (2000), Markerless tracking using planar structures in the scene, Proceedings of the IEEE and ACM International Symposium on Augmented Reality, 120-128.
  12. Szeliski, R. (2011), Computer Vision: Algorithms and Applications, Springer, New York.
  13. Tariq, H., Takamori, A., Vetrano, F., Wang, C., Bertolini, A., Calamai, G., DeSalvo, R., Gennai, A., Lolloway, L., Losurdo, G., Marka, S., Mazzoni, M., Paoletti, F., Passuellop, D., Sannibale, V., and Stanga, R. (2002), The linear variable differential transformer (LVDT) position sensor for gravitational wave interferometer low-frequency controls, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 489(1), 570-576.
  14. Yang, H., Gu, Q., Aoyama, T., Takaki, T., and Ishii, I. (2013), Dynamics-based stereo visual inspection using multidimentional modal analysis, IEEE Sensors Journal, 13(12), 4831-4843. https://doi.org/10.1109/JSEN.2013.2276620
  15. Yilmaz, A., Javed, O., and Shah, M. (2006), Object tracking: A survey, Acm computing surveys (CSUR), 38(4), Article No. 13.

피인용 문헌

  1. Development of Structure Dynamic Characteristics Analysis System Prototype using Image Processing Technique vol.16, pp.3, 2016, https://doi.org/10.5392/JKCA.2016.16.03.011
  2. Corrigendum to "Vision-based Displacement Measurement System Operable at Arbitrary Positions" vol.19, pp.1, 2015, https://doi.org/10.11112/jksmi.2015.19.1.001
  3. Displacement Measurement of Steel Pipe Support Using Image Processing Technology vol.8, pp.3, 2014, https://doi.org/10.18178/joig.8.3.80-84