Dependence Potential of Tramadol: Behavioral Pharmacology in Rodents

Hye Jin Cha¹,³, Min Ji Song¹, Kwang-Wook Lee¹, Eun Jung Kim¹, Young-Hoon Kim¹, Yunje Lee¹, Won-Keun Seong¹, Sa-Ik Hong³, Choon-Gon Jang³, Han Sang Yoo³ and Ho-Sang Jeong¹,*

¹Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709,
²School of Pharmacy, Sungkyunkwan University, Suwon 440-746,
³Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea

Abstract
Tramadol is an opioid analgesic agent that has been the subject of a series of case reports suggesting potential for misuse or abuse. However, it is not a controlled substance and is not generally considered addictive in Korea. In this study, we examined the dependence potential and abuse liability of tramadol as well as its effect on the dopaminergic and serotonergic systems in rodents. In animal behavioral tests, tramadol did not show any positive effects on the experimental animals in climbing, jumping, and head twitch tests. However, in the conditioned place preference and self-administration tests, the experimental animals showed significant positive responses. Taken together, tramadol affected the neurological systems related to abuse liability and has the potential to lead psychological dependence.

Key Words: Tramadol, Dopamine system, Serotonin system, Drug dependence, Animal behavioral tests

INTRODUCTION
Tramadol is one of the most frequently prescribed drugs for moderate to severe pain in Korea. It is an atypical, centrally acting, synthetic analgesic functioning through opioid and non-opioid systems (Sarkar et al., 2012). It was first introduced in Germany in the late 1970s, and has been used widely around the world. Several case reports have indicated the abuse potential of the drug (Nebhinani et al., 2013; Zhang and Liu, 2013; Randall and Crane, 2014), and it is controlled as a psychotropic substance in several countries including Australia, Sweden and some states in the USA. However, in most countries including Korea the drug is not controlled and even can be purchased without prescription in some countries. Besides, there are only a few scientific reports revealing its mechanism of action and dependence or abuse liability.

Drug dependence is defined as the loss of control over drug use or the compulsive seeking and taking of drugs despite adverse consequences (Koob, 1999). Animal experiment are an effective tool to indirectly evaluate drug dependence that is either physical or psychological (Acheson et al., 1999; Varlinskaya and Spear, 2002; Doremus et al., 2003; Chung et al., 2008; Morris et al., 2010). Physical dependence refers to chronic use of a drug to the point of tolerance in which negative physical symptoms or withdrawal result from abrupt drug discontinuation or dosage reduction (Landry et al., 1992). Psychological dependence refers to a lack of self restraint regarding drug use. Two important concepts pertaining to this phenomenon are reinforcement and reward (Taylor, 2002). “Reinforcement” refers to an event that increases the probability of a given action. The meaning of “reward” is similar, but reward usually refers to a positive sensation, such as pleasure (Koob, 1992).

Several laboratory experiments are commonly used to validate a drug’s dependence potential (Chung et al., 2008). Researchers examine the climbing and head twitch behaviors in pre-evaluation experiments to monitor drug’s dopaminergic and serotonergic effects, respectively. The jumping behavior test is typically used to determine a drug’s potential to lead to physical dependence, particularly for the opioids (Way et al.,...
Materials and methods

Animals and drugs

Sprague-Dawley rats (weight, 180-220 g) and ICR mice (weight, 15-20 g) were obtained from Korea Food and Drug Administration (AAALAC member, Seoul, Korea) and they were housed in groups, of adequate size, in a temperature-controlled 23 ± 2°C room with a 12 hour light/dark cycle (lights on 08:00 to 20:00). The animal tests were approved by NIFDS/Animal Ethics Board (0904KFDA053). The animals received a solid diet and tap water ad libitum, and their treat-....
CPP and self-administration data (tests. Paired via paired t-tests were also used to analyze the t-tests.) The climbing, jumping, and head twitch data were analyzed (Entobar®, Hanlim Pharmaceuticals, Seoul, South Korea).

The rats were anesthetized with pentobarbital sodium (n=15). Data are mean ± standard error treatment (after apomorphine treatment: control', A' (0.03 mg/kg), B' (0.07 mg/kg), C' (0.1 mg/kg), i.p.). The surgical procedures adhered to aseptic conditions as described previously (Weeks, 1972; Mucha et al., 1982). Briefly, a catheter was inserted into the right jugular vein and catheter exited on the shoulder. The rats received heparin everyday during the experimental periods. After surgery, each rat recovered for at least 14 days in a controlled cage, receiving a solid diet and tap water ad libitum.

Testing procedures were as follows. The rats could self-administer one of the three doses of tramadol (0.3, 0.7, and 1.5 mg/kg/0.1 ml per infusion), and a negative control substance (saline, 0.1 ml per infusion) for 6 s followed by 20 s of time-out, during daily 2 h sessions on a fixed-ratio 1 (FR1) reinforcement schedule. On this schedule, when a rat pressed the active lever, it received a certain drug dose (0.1 ml) injected into the jugular vein through the catheter. The self-administration chamber contained two levers linked to a computer program that recorded the experimental data. The test was carried out for >7 days.

Statistics: Data are expressed as mean ± standard error. The climbing, jumping, and head twitch data were analyzed via paired t-tests. Paired t-tests were also used to analyze the CPP and self-administration data (p<0.05).

RESULTS

Climbing behavior test
We measured climbing behavior in the experimental mice with or without pre-treatment of the saline (1 mg/kg, i.p.) or tramadol (0.03, 0.07, or 0.1 mg/kg, i.p.) to determine whether tramadol affects the dopaminergic system. No differences were observed between the saline treated group and the tramadol treated groups, regardless of drug concentration with or without apomorphine treatment (Fig. 1).

Jumping behavior test
The jumping test was performed to determine if tramadol showed withdrawal syndrome. We administered the saline (1 mg/kg, i.p.) or one of three doses of tramadol (0.03, 0.07, or 0.1 mg/kg, i.p.) prior to administering morphine. The mice received morphine (150 mg/kg, subcutaneously) 4 hr before naloxone (10 mg/kg, i.p.). As shown in Fig. 2, two groups of tramadol-treated mice (0.03 and 0.07 mg/kg) showed the jumping behavior, but the difference between the saline-treated group and tramadol-treated group was not significant. In the morphine-pretreated groups, two of tramadol-treated groups jumped more than saline-treated group; one tramadol-treated group showed a statistically significant increase (0.03 mg/kg). The results are depicted in Fig. 2.

Head twitch response
The head twitch response was observed to evaluate the serotonergic effect of tramadol. One of the three doses of tramadol (0.01, 0.03, or 0.07 mg/kg, i.p.) was administered prior to administering serotonin (5-HT, 3-4 mg/kg, i.c.v.). We counted responses in each of the groups three times, for 2 min each, with 10 min intervals. As shown in Fig. 3, no mice in either the saline-treated group or the tramadol treated groups showed a head twitch response in the absence of serotonin. In contrast, the tramadol-treated groups showed a tendency for increasing responses compared with that in the saline-treated group. However, only one tramadol-treated group (0.07 mg/kg) showed a significant increase (Fig. 3).

Conditioned place preference
The possibility for psychological dependency or abuse liability was evaluated through conditioned place preference and self-administration. Considering the overall results, the animal’s place preference clearly changed in every group during the 8 day-conditioning period. In contrast with the mice treated with saline, the entire group treated with drugs (tramadol and methamphetamine) spent more time in the undesirable room after the conditioning period. When the differences were compared between the saline-treated and drug-treated groups, the animals that received tramadol showed a dose-dependent pattern and significant place preference scores (Fig. 4).

Self-administration
The self-administration test was maintained on a FR 1
schedule for >7 days, and the responses on the active lever were checked on a daily basis. The saline-treated group did not show active responses. Interestingly, the experimental rats in all three tramadol-treated groups showed increased self-administration and significant active responses compared with those of the saline-treated group (Fig. 5).

DISCUSSION

Tramadol is structurally related with opioids such as morphine and codeine and has an analgesic effect. It is commonly used to treat patients with moderate to severe pain due to critical surgery. However, its abuse liability and dependence potential have not been well discussed. We performed various animal behavioral experiments to demonstrate the mode of action and the potential for inducing physical or psychological dependence of tramadol. Climbing behavior and head twitch experiments were performed as pre-evaluating experiments to determine whether tramadol affected the dopaminergic and serotonergic systems. Tramadol did not induce any significant change in animal behavior in the climbing behavior experiment, whereas one dose of tramadol significantly increased head-twitch behavior. These results were concurred with previous reports that the activity of tramadol is mediated both by activating and modulating the serotonergic system (Zhang et al., 2012). Also, there are many reports on tramadol's serotonin syndrome (Mansouripour and Afshari, 2013; Park et al., 2014). Since the serotonin syndrome of tramadol has been noticed through several case reports only, the modes of action need to be revealed through further molecular studies. The jumping test result suggested that tramadol may induce physical dependence when morphine was pre-treated. Studies have commonly noted that withdrawal of jumping behavior is the most reliable and generally useful for measuring physical dependence in rodents, particularly with regard to opioids (Way et al., 1969; Saelens et al., 1971; Smits, 1975; Ritzmann, 1981; El-Kadi and Sharif, 1994; Kest et al., 2001). Additional research will be needed to confirm physical dependence of tramadol.

The conditioned place preference test and self-administration test were performed to evaluate the psychological dependence potential of tramadol. Mice that stayed longer in the black chamber during the preconditioning phase of the conditioned place preference test were selected for the experiment. Significantly meaningful and dose-dependent data were obtained in the tramadol administered group. Moreover, significant increases in self-administration were observed in all groups of tramadol-treated rats. In this experiment, the experimental rats in all the three groups of tramadol acquired self-administration and demonstrated significant active responses compared with those of the saline-treated group (Fig. 5).
buprenorphine (Zhang et al., 2012). Taken together the results from various animal behavioral tests including conditioned place preference and self-administration tests, we conclude that tramadol might have a potential to induce physical and psychological dependence in rodents. This result suggests that it would be worthwhile monitoring usage of tramadol to prevent possible drug abuse in the future.

ACKNOWLEDGMENTS

This study was supported by the National Institute of Food and Drug Safety Evaluation (09171KFDA667).

REFERENCES

Chung, C. S., Wang, J., Wehman, M. and Rhoads, D. E. (2008) Seizure susceptibility from various animal behavioral tests including conditioned place preference and self-administration tests, we conclude that tramadol might have a potential to induce physical and psychological dependence in rodents. This result suggests that it would be worthwhile monitoring usage of tramadol to prevent possible drug abuse in the future.

REFERENCES

