DOI QR코드

DOI QR Code

Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis

수전해 반응에 의한 고분자전해질 연료전지 전극과 막의 열화

  • Received : 2014.04.08
  • Accepted : 2014.05.10
  • Published : 2014.12.01

Abstract

Proton Exchange Membrane Fuel Cells (PEMFC) can generate hydrogen and oxygen from water by electrolysis. But the electrode and polymer electrolyte membrane degrade rapidly during PEM water electrolysis because of high operation voltage over 1.7V. In order to reduce the rate of anode electrode degradation, unsupported $IrO_2$ catalyst was used generally. In this study, Pt/C catalyst for PEMFC was used as a water electrolysis catalyst, and then the degradation of catalyst and membrane were analysed. After water electrolysis reaction in the voltage range from 1.8V to 2.0V, I-V curves, impedance spectra, cyclic voltammograms and linear sweep voltammetry (LSV) were measured at PEMFC operation condition. The degradation rate of electrode and membrane increased as the voltage of water electrolysis increased. The hydrogen yield was 88 % during water electrolysis for 1 min at 2.0V, the performance at 0.6V decreased to 49% due to degradation of membrane and electrode assembly.

고분자전해질 연료전지로 물을 전기분해하여 수소와 산소를 발생시킬 수 있다. 그러나 1.7V 이상의 높은 전압에서 수전해 반응이 일어나므로 전극과 고분자 전해질 막의 열화가 빠르게 진행된다. 수전해 과정에서 anode의 열화를 방지하기 위해 촉매로 지지체 없는 $IrO_2$를 보통 사용하는데 본 연구에서는 고분자전해질 연료전지용 Pt/C 촉매를 수전해 반응에 그대로 사용했을 때 전극과 막의 열화 현상을 분석하였다. 1.8~2.0 V 전압 범위에서 수전해 반응 후 고분자 전해질 연료전지 구동 조건에서 I-V, CV, 임피던스, LSV를 측정했다. 수전해 전압이 높을수록 전극과 막의 열화 속도가 증가하였다. 2.0 V에서 1분 동안 수전해 반응했을 때 수소 수율은 88%였고, 전극과 고분자 막이 열화되어 0.6 V에서 성능이 49% 감소하였다.

Keywords

References

  1. Marcelo, C., David, L. F., Jurgen M. and Detlef, S., "A Comprehensive Review on PEM Water Electrolysis," Int. J. Hydrog. Energy, 38, 4901-4934(2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
  2. Barbir, F., "PEM Electrolysis for Production of Hydrogen from Renewable Energy Sources," Sol. Energy, 78, 661-669(2005). https://doi.org/10.1016/j.solener.2004.09.003
  3. Ito, H., Maeda, T., Nakano, A. and Takenaka, H., "Properties of Nafion Membranes Under PEM Water Electro Lysis Conditions," Int. J. Hydrog. Energy, 36, 10527-10540(2011). https://doi.org/10.1016/j.ijhydene.2011.05.127
  4. Mayousse, E., Maillard, F., Fouda-Onana, F., Sicardy, O. and Guillet, N., "Synthesis and Characterization of Electrocatalysts for the Oxygen Evolution in PEM Water Electrolysis," Int. J. Hydrog. Energy, 36, 10474-10481(2011). https://doi.org/10.1016/j.ijhydene.2011.05.139
  5. Wang, J. T., Wang, W. W., Cheng, Wang, Z. and Mao, Q., "Corrosion Behavior of Three Bipolar Plate Materials in Simulated SPE Water Electrolysis Environment," Int. J. Hydrog. Energy, 37, 12069-12073(2012). https://doi.org/10.1016/j.ijhydene.2012.04.146
  6. Asier, G. U., Dimitrios, P. and Keith, S., "Solid Acids as Electrolyte Materials for Proton Exchange Embrane (PEM) Electrolysis: Review," Int. J. Hydrog. Energy, 37, 3358-3372(2012). https://doi.org/10.1016/j.ijhydene.2011.09.152
  7. Huaneng, S., Bernard, J. B., Vladimir, L., Sivakumar, P., and Shan, J., "Study of Catalyst Sprayed Membrane Under Irradiation Method to Prepare High Performance Membrane Electrode Assemblies for Solid Polymer Electrolyte Water Electrolysis," Int. J. Hydrog. Energy, 36, 15081-15088(2011). https://doi.org/10.1016/j.ijhydene.2011.08.057
  8. Xu, J., Miao, R., Zhao, T., Wu, J. and Wang, X., "A Novel Catalyst Layer with Hydrophilic-hydrophobic Meshwork and Pore Structure for Solid Polymer Electrolyte Water Electrolysis," Electrochem. Commun., 13, 437-439(2011). https://doi.org/10.1016/j.elecom.2011.02.014
  9. Zhang, Y., Wang, C., Wan, N., Liu, Z. and Mao, Z., "Study on a Novel Manufacturing Process of Membrane Electrode Assemblies for Solid Polymer Electrolyte Water Electrolysis," Electrochem. Commun., 9, 667-670(2011).
  10. Siracusano, S., Baglio, V., D'Urso, C., Antonucci, V. and Arico, A. S., "Preparation and Characterization of Titanium Suboxides as Conductive Supports of $IrO_2$ Electrocatalysts for Application in SPE Electrolysers," Electrochim. Acta, 54, 6292-6299(2009). https://doi.org/10.1016/j.electacta.2009.05.094
  11. Salwan, S., Dihrab, K., Sopian, M. A., Alghoul, M. and Sulaiman, Y., "Review of the Membrane and Bipolar Plates Materials for Conventional and Unitized Regenerative Fuel Cells," Renew. Sust. Energ. Rev., 13, 1663-1668(2009). https://doi.org/10.1016/j.rser.2008.09.029
  12. Zhuo, X., Sui, S. and Zhang, J., "Electrode Structure Optimization Combined with Water Feeding Modes for Bi-Functional Unitized Regenerative Fuel Cells," Int. J. Hydrog. Energy, 38, 4792-4797(2013). https://doi.org/10.1016/j.ijhydene.2013.01.137
  13. Grigoriev, S. A., Millet, P., Dzhus, K. A., Middleton, H., Saetre, T.O. and Fateev, V. N., "Design and Characterization of Bi-functional Electrocatalytic Layers for Application in PEM Unitized Regenerative Fuel Cells," Int. J. Hydrog. Energy, 35, 5070-5076(2010).
  14. Grigoriev, S. A., Millet, P., Porembsky, V. I. and Fateev, V. N. "Development and Preliminary Testing of a Unitized Regenerative Fuel Cell Based on PEM Technology," Int. J. Hydrog. Energy, 36, 4164-4168(2011). https://doi.org/10.1016/j.ijhydene.2010.07.011
  15. Garcia, G., Roca-Ayats, M., Lillo, A., Galante, J. L., M. A., Pe, M. V. and Huerta, M., "Catalyst Support Effects at the Oxygen Electrode of Unitized Regenerative Fuel Cells," Catal. Today, 210, 67-74(2013). https://doi.org/10.1016/j.cattod.2013.02.003
  16. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  17. Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68

Cited by

  1. 분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구 vol.54, pp.6, 2014, https://doi.org/10.9713/kcer.2016.54.6.854