DOI QR코드

DOI QR Code

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network

연료전지차량용 연료개질기에 대한 최적연료비교연구

  • 정익환 (서울대학교 화학생물공학부) ;
  • 박찬샘 (서울대학교 화학생물공학부) ;
  • 박성호 (서울대학교 화학생물공학부) ;
  • 나종걸 (서울대학교 화학생물공학부) ;
  • 한종훈 (서울대학교 화학생물공학부)
  • Received : 2014.03.31
  • Accepted : 2014.04.26
  • Published : 2014.12.01

Abstract

PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

PEMFC(Proton Exchange Membrane Fuel Cell) 차량은 미래 청정수송기관으로 각광받고 있지만 수소스테이션의 인프라부족으로 현재는 수소를 공급해주는 연료개질기를 함께 장착하여 구동하여야 한다. 탄화수소연료로부터 수소를 생산하는 연료개질기를 대상으로 다양한 연구가 진행되어왔는데 기존연구에서는 열적중립 조건의 ATR(Auto-Thermal Reformer) 반응기에 대해 집중적으로 분석하거나 공정최적화부문에서 최대수소생산을 목표로 주로 열효율을 목적함수로 설정하여 평가해 왔다. 본 연구에서는 100 kW PEMFC용 연료개질기를 대상으로 간단한 소형시스템을 얻기 위해 외부 유틸리티가 필요없는 단열열교환망으로 구성된 조건에서 기존 열효율이 아닌 수소효율을 새로이 정의하여 가솔린, LPG, 디젤 각 연료에 대해 최적운전조건을 도출하였다. 가솔린의 경우 기존 비교문헌보다 9.43% 연료절감효과를 얻음으로써 제안한 목적함수의 타당성을 입증하였고, 추가적으로 수소효율 및 열교환량, 열교환면적에 대한 민감도 분석을 실시하였다. 마지막으로 제안한 시스템을 한국시장에 적용할 경우 LPG 연료를 사용하는 연료개질기가 가장 경제적임을 알 수 있었다.

Keywords

References

  1. Joo, O., "Hydrogen Production Technology," Korean Chem. Eng. Res., 49(6), 688-696(2011). https://doi.org/10.9713/kcer.2011.49.6.688
  2. Youn, M., Seo, J., Cho, K., Jung, J., Kim, H., La, K., Park, D., Park, S., Lee, S. and Song, I., "Effect of Support on Hydrogen Production by Auto-thermal Reforming of Ethanol over Supported Nickel Catalysts," Korean J. Chem. Eng., 25(2), 236-238(2008). https://doi.org/10.1007/s11814-008-0042-1
  3. Kim, M., Lee, S., Kwak, J., Han, G. and Yoon, K., "Hydrogen Production by Decomposition of Ethane-containing Methane over Carbon Black Catalysts," Korean J. Chem. Eng., 28(9), 1833-1838(2011). https://doi.org/10.1007/s11814-011-0064-y
  4. Recupero, V., Pino, L., Vita, A., Cipitl, F., Cordaro, M. and Lagana, M., "Development of a LPG Fuel Processor for PEFC Systems: Laboratory Scale Evaluation of Autothermal Reforming and Preferential Oxidation Subunits," Int. J. Hydrogen Energy, 30(9), 963-971(2005). https://doi.org/10.1016/j.ijhydene.2004.12.014
  5. Loffler, D. G., Taylor, K. and Mason, D., "A Light Hydrocarbon Fuel Processor Producing High-purity Hydrogen," J. Power Sources, 117(1-2), 84-91(2003). https://doi.org/10.1016/S0378-7753(03)00357-4
  6. Gokaliler, F., Selen Caglayan, B., Ilsen Onsan, Z. and Erhan Aksoylu, A., "Hydrogen Production by Autothermal Reforming of LPG for PEM Fuel Cell Applications," Int. J. Hydrogen Energy, 33(4), 1383-1391(2008). https://doi.org/10.1016/j.ijhydene.2007.12.050
  7. Moon, D. J., Sreekumar, K., Lee, S. D., Lee, B. G. and Kim, H. S., "Studies on Gasoline Fuel Processor System for Fuel-cell Powered Vehicles Application," Appl. Catal. A-Gen., 215(1-2), 1-9(2001). https://doi.org/10.1016/S0926-860X(01)00526-9
  8. Docter, A. and Lamm, A., "Gasoline Fuel Cell Systems," J. Power Sources, 84(2), 194-200(1999). https://doi.org/10.1016/S0378-7753(99)00317-1
  9. Pereira, C., Bae, J., Ahmed, S. and Krumpelt, M., "Liquid Fuel Reformer Development: Autothermal Reforming of Diesel Fuel," Proceedings of the 2000 Hydrogen Program Review, NREL/CP-570-28890(2000).
  10. Cutillo, A., Specchia, S., Antonini, M., Saracco, G. and Specchia, V., "Diesel Fuel Processor for PEM Fuel Cells: Two Possible Alternatives (ATR versus SR)," J. Power Sources, 154(2), 379-385(2006). https://doi.org/10.1016/j.jpowsour.2005.10.065
  11. Sopena, D., Melgar, A., Briceno, Y., Navarro, R. M., Alvarez-Galvan, M. C. and Rosa, F., "Diesel Fuel Processor for Hydrogen Production for 5 kW Fuel Cell Application," Int. J. Hydrogen Energy, 32(10-11), 1429-1436(2007). https://doi.org/10.1016/j.ijhydene.2006.10.046
  12. Ipsakis, D., Voutetakis, S., Papadopoulou, S. and Seferlis, P., "Optimal Operability by Design in a Methanol Reforming-PEM Fuel Cell Autonomous Power System," Int. J. Hydrogen Energy, 37(21), 16697-16710(2012). https://doi.org/10.1016/j.ijhydene.2012.02.134
  13. Seo, D. J., Yoon, W.-L., Yoon, Y.-G., Park, S.-H., Park, G.-G. and Kim, C.-S., "Development of a Micro Fuel Processor for PEMFCs," Electrochim. Acta, 50(2-3), 719-723(2004). https://doi.org/10.1016/j.electacta.2004.01.112
  14. Ryi, S.-K., Park, J.-S., Choi, S.-H., Cho, S.-H. and Kim, S.-H., "Novel Micro Fuel Processor for PEMFCs with Heat Generation by Catalytic Combustion," Chem. Eng. J., 113(1), 47-53(2005). https://doi.org/10.1016/j.cej.2005.08.008
  15. Caglayan, B. S., Ilsen Onsan, Z. and Erhan Aksoylu, A., "Production of Hydrogen over Bimetallic Pt-Ni/${\delta}-Al_2O_3$: II. Indirect Partial Oxidation of LPG," Catal. Lett., 102(1-2), 63-67(2005). https://doi.org/10.1007/s10562-005-5204-8
  16. Zeng, G., Tian, Y. and Li, Y., "Thermodynamic Analysis of Hydrogen Production for Fuel Cell Via Oxidative Steam Reforming of Propane," Int. J. Hydrogen Energy, 35(13), 6726-6737(2010). https://doi.org/10.1016/j.ijhydene.2010.03.099
  17. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. and Eichhorn, B., "Ru-Pt Core-shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen," Nat. Mater. 7(4), 333-338(2008). https://doi.org/10.1038/nmat2156
  18. Son, I. and Lane, A., "Promotion of Pt/${\gamma}-Al_2O_3$ by Ce for Preferential Oxidation of CO in $H_2$," Catal. Lett., 76(3-4), 151-154(2001). https://doi.org/10.1023/A:1012293311973
  19. Ahluwalia, R. K., Zhang, Q., Chmielewski, D. J., Lauzze, K. C. and Inbody, M. A., "Performance of CO Preferential Oxidation Reactor with Noble-metal Catalyst Coated on Ceramic Monolith for On-board Fuel Processing Applications," Catal. Today, 99(3-4), 271-283(2005). https://doi.org/10.1016/j.cattod.2004.10.015
  20. Georgakis, C., Uzturk, D., Subramanian, S. and Vinson, D. R., "On the Operability of Continuous Processes," Control Eng. Pract., 11(8), 859-869(2003). https://doi.org/10.1016/S0967-0661(02)00217-4
  21. Bisaria, V. and Smith, R. J. B., "Hydrogen Production by Onboard Gasoline Processing - Process Simulation and Optimization," Energ. Convers. Manage., 76, 746-752(2013). https://doi.org/10.1016/j.enconman.2013.08.006
  22. Ersoz, A., Olgun, H. and Ozdogan, S., "Simulation Study of a Proton Exchange Membrane (PEM) Fuel Cell System with Autothermal Reforming," Energy, 31(10-11), 1490-1500(2006). https://doi.org/10.1016/j.energy.2005.05.018
  23. Ersoz, A., Olgun, H., Ozdogan, S., Gungor, C., Akgun, F. and Tlrls, M., "Autothermal Reforming as a Hydrocarbon Fuel Processing Option for PEM Fuel Cell," J. Power Sources, 118(1-2), 384-392(2003). https://doi.org/10.1016/S0378-7753(03)00104-6
  24. http://www.opinet.co.kr.

Cited by

  1. Scenario-based Design and Life Cycle Cost Analysis of Energy Supply System for Transportation Sector vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.164
  2. Study on Possibility of Diesel Reforming with Hydrogen Peroxide in Low-Oxygen Environments vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.584