DOI QR코드

DOI QR Code

Physical Characterizations and In Vitro Skin Permeation of Elastic Liposomes for Transdermal Delivery of Polygonum aviculare L. Extract

마디풀 추출물의 경피 전달을 위한 탄성 리포좀의 물리적 특성 및 In Vitro 피부 투과 연구

  • Han, Saet Byeol (Department of Fine Chemistry, Nanobiocosmetic Laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kwon, Soon Sik (Department of Fine Chemistry, Nanobiocosmetic Laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Jeong, Yoo Min (Department of Fine Chemistry, Nanobiocosmetic Laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kong, Bong Ju (Department of Fine Chemistry, Nanobiocosmetic Laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Yu, Eun Ryeong (Department of Fine Chemistry, Nanobiocosmetic Laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Nanobiocosmetic Laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 한샛별 (서울과학기술대학교 정밀화학과 나노바이오 화장품연구실, 화장품종합기술연구소) ;
  • 권순식 (서울과학기술대학교 정밀화학과 나노바이오 화장품연구실, 화장품종합기술연구소) ;
  • 정유민 (서울과학기술대학교 정밀화학과 나노바이오 화장품연구실, 화장품종합기술연구소) ;
  • 공봉주 (서울과학기술대학교 정밀화학과 나노바이오 화장품연구실, 화장품종합기술연구소) ;
  • 유은령 (서울과학기술대학교 정밀화학과 나노바이오 화장품연구실, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 나노바이오 화장품연구실, 화장품종합기술연구소)
  • Received : 2014.02.03
  • Accepted : 2014.07.03
  • Published : 2014.11.25

Abstract

In this study, Polygomun aviculare L. (P. aviculare L.) extract loaded elastic liposomes (ELPs) were investigated to enhance the transdermal delivery of P. aviculare L. extract composed of various flavonoids. ELPs were composed of egg phospholipids (PC) and edge activator ($Tego^{(R)}$ care 450) and the physical properties and in vitro permeation studies of ELPs were performed. Particle size ranged from 148.1 to 262.2 nm and deformability index was recorded as 11.5~25.4. Loading efficiency was from 53.1 to 66.3%. In vitro skin permeation studies using Franz diffusion cell demonstrated that ELP-4 having ratio of 85:15 for PC to $Tego^{(R)}$ care 450 exhibited the higher skin permeability than ELP-1, the general liposome without $Tego^{(R)}$ care 450. It was visually seen by fluorescence image restoration microscopy. The findings suggest that ELP-4 selected as the optimal formulation could be used as useful formulation for transdermal delivery of the extract.

본 연구에서는 다양한 플라보노이드를 주성분으로 하는 마디풀 추출물의 피부 흡수를 증진시키기 위하여 인지질(PC)과 계면활성제($Tego^{(R)}$ care 450)로 구성된 탄성 리포좀(ELPs)을 제조하였으며, 그것의 물리적 특성 및 in vitro 피부 투과능을 평가하였다. 마디풀 추출물을 담지한 탄성 리포좀의 평균 입자 크기는 148.1~262.2 nm, 가변형성 지수는 11.5~25.4, 포집 효율은 53.1~66.3%로 나타났다. Franz diffusion cell을 이용한 in vitro 피부 투과 실험결과, 인지질 대 계면활성제 비율이 85:15인 ELP-4가 계면활성제가 포함되지 않은 일반 리포좀인 ELP-1보다 더 높은 피부 투과능을 갖는 것을 확인하였으며, 이를 형광 이미지 복원 현미경을 통해 가시적으로 확인하였다. 결론적으로 최적 조건으로 선정된 ELP-4는 마디풀 추출물의 피부 흡수 증진을 위한 유용한 피부 전달체로 이용될 수 있음을 확인하였다.

Keywords

Acknowledgement

Supported by : 보건복지부

References

  1. S. N. Park, J. Soc. Cosmet. Scientists Korea, 23, 75 (1997).
  2. M. Yaar and B. A. Gilchrest, Br. J. Dermatol., 157, 874 (2007). https://doi.org/10.1111/j.1365-2133.2007.08108.x
  3. D. H. Won, S. B. Han, J. P. Hwang, S. J. Kim, J. N. Park, and S. N. Park, J. Soc. Cosmet. Scientists Korea, 38, 297 (2012).
  4. J. A. Bouwstra and P. L. Honeywell-Nguyen, Adv. Drug Deliv. Rev., 54, 41 (2002). https://doi.org/10.1016/S0169-409X(02)00114-X
  5. P. L. Honeywell-Nguyen and J. A. Bouwstra, Drug Delivery/ Formulation and Nanotechnology, 2, 67 (2005).
  6. M. S. Lim, S. B. Han, S. S. Kwon, M. A. Park, and S. N. Park, J. Soc. Cosmet. Scientists Korea, 38, 147 (2012).
  7. A. Sharma and U. S. Sharma, Int. J. Pharm., 154, 123 (1997). https://doi.org/10.1016/S0378-5173(97)00135-X
  8. M. J. Choi and H. I. Mailbach, Int. J. Cosmet. Sci., 27, 211 (2005). https://doi.org/10.1111/j.1467-2494.2005.00264.x
  9. M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Int. J. Pharm., 332, 1 (2007). https://doi.org/10.1016/j.ijpharm.2006.12.005
  10. V. Harsh, K. Annu, B. Rahul, and J. Vandana, Int. Res. J. Pharm., 3, 117 (2012).
  11. N. A. Yunuskhodzhaeva, K. A. Eshbakova, and V. N. Abdullabekova, Chem. Nat. Compd., 46, 803 (2010). https://doi.org/10.1007/s10600-010-9749-4
  12. C. B. Jeon, M. S. Dissertation, Graduate School of Education Chungbuk National University, Korea (2012).
  13. C. G. Lee, N. J. Kim, N. D. Hong, and C. H. Kwon, Kor. J. Pharmacogn., 25, 59 (1994).
  14. M. J. Kim, M. S. Dissertation, Graduate School of Seoul National University of Science and Technology, Korea (2012).
  15. R. J. Nijveldt, E. V. Nood, D. EC. V. Hoorn, P. G. Boelens, K. V. Norren, and P. A. M. V. Leeuwen, Am. J. Clin. Nutr., 74, 418 (2001).
  16. J. W. Lin, H. M. Chiang, Y. C. Lin, and K. C. Wen, J. Food Drug Anal., 16, 1 (2008).
  17. M. S. Lim, M. A. Park, S. S. Kwon, S. B. Han, and S. N. Park, Polymer(Korea), 36, 705 (2012).
  18. O. Lopez, A. D. L. Maza, L. Coderch, C. Lopez-Iglesias, E. Wehrli, and J. L. Parra, FEBS, 426, 314 (1998). https://doi.org/10.1016/S0014-5793(98)00363-9
  19. G. Aastha, A. Sandeep, and S. Arvind, Novel Science - IJPS, 2, 1 (2013).
  20. A. K. Singh, E. B. Cummings, and D. J. Throckmorton, Anal. Chem., 73, 1057 (2001). https://doi.org/10.1021/ac001159x

Cited by

  1. Physical characteristics and in vitro skin permeation of elastic liposomes loaded with caffeic acid-hydroxypropyl-β-cyclodextrin vol.33, pp.9, 2016, https://doi.org/10.1007/s11814-016-0146-y
  2. The Effect of Alkyl Chain Number in Sucrose Surfactant on the Physical Properties of Quercetin-Loaded Deformable Nanoliposome and Its Effect on In Vitro Human Skin Penetration vol.8, pp.8, 2018, https://doi.org/10.3390/nano8080622
  3. 나노버블 기법을 이용한 화장품 내 유효물질의 피부투과성 증가에 관한 연구 vol.37, pp.4, 2020, https://doi.org/10.12925/jkocs.2020.37.4.1041
  4. α-Bisabolol을 함유한 PIT Nanoemulsion의 최적화 및 피부흡수연구 vol.37, pp.6, 2020, https://doi.org/10.12925/jkocs.2020.37.6.1738