DOI QR코드

DOI QR Code

Total Folate Contents of 15 Edible Plants Consumed in Korea Using Trienzyme Extraction Method

국내 소비되는 봄나물의 Trienzyme 추출법을 적용한 엽산 함량 분석

  • Kim, Bo Min (Functional Food and Nutrition Division, Department Agro-Food Resource, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, So-Min (Functional Food and Nutrition Division, Department Agro-Food Resource, National Academy of Agricultural Science, Rural Development Administration) ;
  • Oh, Ji Yeon (Functional Food and Nutrition Division, Department Agro-Food Resource, National Academy of Agricultural Science, Rural Development Administration) ;
  • Cho, Young-Sook (Functional Food and Nutrition Division, Department Agro-Food Resource, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Se-Na (Functional Food and Nutrition Division, Department Agro-Food Resource, National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Youngmin (Functional Food and Nutrition Division, Department Agro-Food Resource, National Academy of Agricultural Science, Rural Development Administration)
  • 김보민 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 김소민 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 오지연 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 조영숙 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 김세나 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 최용민 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과)
  • Received : 2014.09.15
  • Accepted : 2014.10.21
  • Published : 2014.11.30

Abstract

Trienzyme digestion (AOAC Official Method 2004.05) procedure using protease, ${\alpha}$-amylase, and chicken pancreas conjugase was evaluated to determine its usefulness in the microbiological quantitation of total folate in foods. Folate values obtained by alkali hydrolysis (Korean Food Standards Codex) were compared to those obtained by the trienzyme method for four certified reference materials (CRM) representing diverse matrixes. Trienzyme treatment increased measurable folate from most CRM compared to levels found after alkali hydrolysis. The largest increases were observed with CRM 487 (pig liver, 5.8-fold) and CRM 121 (whole meal flour, 3.1-fold) after trienzyme digestion. Using trienzyme digestion method, total folate contents of raw and blanched edible plants were determined. Eleutherococcus senticosus ($146.9{\mu}g/100g$) showed the highest total folate content, followed by Aster glehni F. Schmidt ($142.8{\mu}g/100g$) and Ledebouriella seseloides H. Wolff ($140.4{\mu}g/100g$) on a wet weight basis. Blanching of samples resulted in an insignificant decrease in folate content for five samples and 11~63% reduction for nine samples. Our finding suggests that trienzyme digestion method is accurate for the determination of food folate in leafy vegetables.

본 연구에서는 국내 엽산 분석 데이터의 질적 양적 향상을 위해 첫째, AOAC법의 trienzyme 추출법과 식품공전의 암모니아 가수분해법을 비교 분석하고 둘째, 엽채류에 있어 trienzyme 추출법의 검증을 위해 국제표준인증물질을 분석하고 정밀성과 정확성을 측정하였다. 마지막으로 검증된 추출법을 적용하여 시판 봄나물(생것, 데친것)의 총 엽산 합량을 L. casei를 이용한 미생물학적 정량법을 적용하여 비교 분석하였다. 연구 결과 CRM 485(mixed vegetable), CRM 487(pig liver), CRM 121(wholemeal flour), 시금치, 돌미나리의 경우 암모니아 추출법보다 trienzyme 추출법을 적용할 경우 엽산 함량이 시료에 따라 1.2에서 5.8배까지 증가하였다. 따라서 나물 등 엽채류 식품에 함유된 천연 엽산 분석에는 trienzyme 추출법 적용이 필요한 것으로 생각된다. Trienzyme 추출법을 적용하여 분석한 봄나물(생것, 데친 것)의 엽산 함량은 습물 기준(wet weight basis) 나물 생시료의 경우 오가피($146.9{\mu}g/100g$), 부지갱이($142.8{\mu}g/100g$), 갯기름($140.4{\mu}g/100g$)의 엽산 함량이 15개의 분석시료 중 높은 값을 나타내었다. 반면 건물 기준(dry weight basis)을 적용한 절대량 비교에서는 민들레($1,643.0{\mu}g/g$), 시금치($1,284.8{\mu}g/g$), 비름나물($1,222.5{\mu}g/g$) 순으로 높은 엽산 함량을 나타내었다. 가죽나물, 참두릅, 세발나물, 돌미나리, 참취나물 경우 $100^{\circ}C$에서 30초간 데쳤을 때 엽산 함량은 차이가 없었으며(P>0.05) 갯기름나물을 제외한 나머지 9개 시료에서는 엽산 함량이 11~63% 감소하였다(건물 기준 비교). 본 연구에 적용된 엽산 trienzyme 추출법은 상대적으로 부족한 국내 다소비 식품의 엽산 분석 연구에 활용될 것으로 생각되며 나아가 국가표준식품성분표 작성을 위한 엽산 데이터베이스 구축의 기초 자료가 될 것이다.

Keywords

References

  1. Gropper SS, Smith JL, Groff JL. 2005. Advanced nutrition and human metabolism. 4th ed. Thomson Wadsworth, Belmont, CA, USA. p 301-315.
  2. Blom HJ, Smulders Y. 2011. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis 34: 75-81. https://doi.org/10.1007/s10545-010-9177-4
  3. Green R. 2011. Indicators for assessing folate and vitamin B-12 status and for monitoring the efficacy of intervention strategies. Am J Clin Nutr 94: 666S-672S. https://doi.org/10.3945/ajcn.110.009613
  4. Kim HJ, Kim H, Kim KN, Kim G, Son JI, Kim SY, Chang N. 2011. Relationship among plasma homocysteine, folate, vitamin $B_{12}$ and nutrient intake and neurocognitive function in the elderly. Korean J Nutr 44: 498-506. https://doi.org/10.4163/kjn.2011.44.6.498
  5. Hyun TS, Han YH, Lim EY. 1999. Blood folate level determined by a microplate reader and folate intake measured by a weighed food record. Korean J Community Nutr 4: 512-520.
  6. DeVries JW, Rader JI, Keagy PM, Hudson CA, Angyal G, Arcot J, Castelli M, Doreanu N, Hudson C, Lawrence P, Martin J, Peace R, Rosner L, Strandler HS, Szpylka J, van den Berg H, Wo C, Wurz C. 2005. Microbiological assay-trienzyme procedure for total folates in cereals and cereal foods: collaborative study. J AOAC Int 88: 5-15.
  7. Ministary of Food and Drug Safety. 2012. Korean Food Standards Codex. Korean Food Industry Association, Seoul, Korea. p 97-106.
  8. Eitenmiller RR, Landen WO. 1998. Vitamin anaysis for the health and food science. CRC Press, Boca Raton, FL, USA. p 411-466.
  9. De Souza S, Eitenmiller R. 1990. Effects of different enzyme treatments on extraction of total folate from various foods prior to microbiological assay and radioassay. J Micronutr Anal 7: 37-57.
  10. De Brouwer V, Zhang GF, Storozhenko S, Straeten DV, Lambert WE. 2007. pH stability of individual folates during critical sample preparation steps in prevision of the analysis of plant folates. Phytochem Anal 18: 496-508. https://doi.org/10.1002/pca.1006
  11. Yon M, Hyun T. 2005. Additional data for the folate database for foods common in Korea. Korean J Nutr 28: 586-604.
  12. National Nutrient Database for Standard Reference Release 27. http://ndb.nal.usda.gov/ndb/ (accessed Aug 2014).
  13. Hwang ES, Stacewicz-Sapuntzakis M, Bowen PE. 2012. Effects of heat treatment on the carotenoid and tocopherol composition of tomato. J Food Sci 77: C1109-C1114. https://doi.org/10.1111/j.1750-3841.2012.02909.x
  14. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004

Cited by

  1. Changes in Food Composition of Tenebrio molitor by Life Stage vol.32, pp.5, 2016, https://doi.org/10.9724/kfcs.2016.32.5.656
  2. 다양한 조리법에 따른 버섯류의 엽산 리텐션 vol.24, pp.8, 2017, https://doi.org/10.11002/kjfp.2017.24.8.1103
  3. 다양한 열 처리방법에 대한 나물류의 엽산 잔존율 vol.51, pp.5, 2014, https://doi.org/10.9721/kjfst.2019.51.5.425