DOI QR코드

DOI QR Code

Investigation of Impact Detection Characteristics of Piezoelectric Paint According to Boundary Conditions

구조물의 경계조건에 따른 압전 페인트 센서의 충격검출 특성 평가

  • Park, Seung-Bok (Dept. of Mechatronics Engineering, and LANL-CBNU Engineering Institute Korea, Chonbuk Nat'l Univ.) ;
  • Han, Dae-Hyun (Dept. of Mechatronics Engineering, and LANL-CBNU Engineering Institute Korea, Chonbuk Nat'l Univ.) ;
  • Kang, Lae-Hyong (Dept. of Mechatronics Engineering, and LANL-CBNU Engineering Institute Korea, Chonbuk Nat'l Univ.)
  • 박승복 (전북대학교 메카트로닉스공학과, 로스알라모스연구소-전북대학교 한국공학연구소) ;
  • 한대현 (전북대학교 메카트로닉스공학과, 로스알라모스연구소-전북대학교 한국공학연구소) ;
  • 강래형 (전북대학교 메카트로닉스공학과, 로스알라모스연구소-전북대학교 한국공학연구소)
  • Received : 2014.04.17
  • Accepted : 2014.08.12
  • Published : 2014.12.01

Abstract

Piezoelectric paint can be used to monitor vibrations or impacts occurring in large engineering structures such as ships and airplanes. This study investigated the impact detection characteristics of a piezoelectric paint sensor and possible errors in detecting impacts according to boundary conditions. The piezoelectric paint sensor used in this study was coated on an aluminum plate with four different electrode areas. After the occurrence of the poling process, the output voltages from the paint sensors were obtained when impact occurred in a certain sensor region. The experimental results revealed a large difference in magnitudes between the sensor signal in the impact region and those in the other regions, and this relation was maintained regardless of the changes in the boundary conditions.

압전 페인트는 얇은 막의 형태로 선박이나 항공기 등에 도포되어 광범위한 면적에 발생되는 진동이나 충격을 검출하는 데 유용하게 사용될 수 있다. 본 논문은 압전 페인트가 코팅된 구조물에 충격이 가해졌을 경우 충격이 가해진 위치를 검출할 수 있는지 평가해 보고, 다양한 경계 조건에 대해 충격 위치 검출에 차이는 없는지 살펴보았다. 실험에 사용된 압전 페인트 센서는 네 영역으로 알루미늄 시편 위에 코팅되었고 분극 과정을 거친 후 한 영역에 충격이 가해졌을 경우 전압의 변화를 실시간 모니터링하였다. 실험 결과, 충격이 가해진 부분 외 나머지 영역에서는 충격신호의 크기가 매우 작아 충격 신호가 거의 검출되지 않았으며, 경계 조건과 무관하게 모든 조건에서 충격이 가해진 부분에서만 큰 충격 신호가 검출되었다.

Keywords

References

  1. Richard, H. A., Fulland, M., Sander, M. and Kullmer, G., 2013, "Examples of Fatigue Crack Growth in Real Structures," In CP2006.
  2. Cho, B. H., Lee, D. Y. and Kim, H. J., 2013 "Policy for Safety of Non-Buildings and Non-Structural Elements Against Natural Hazards in Korea," Journal of the Earthquake Engineering Society of korea, Vol. 17, No.5, pp. 119-128
  3. Taha, M. R., Noureldin, A., Lucero, J. L. and Baca, T. J., 2006, "Wavelet Transform for Structural Health Monitoring: a Compendium of Uses and Features, "Structural Health Monitoring, Vol. 5, No. 3, pp. 267-295. https://doi.org/10.1177/1475921706067741
  4. Ihn, J. B. and Chang, F. K., 2008, "Pitch-Catch Active Sensing Methods in Structural Health Monitoring for Aircraft Structures," Structural Health Monitoring, Vol. 7, No. 1, pp. 5-19. https://doi.org/10.1177/1475921707081979
  5. Kang, I., Schulz, M. J., Kim, J. H., Shanov, V. and Shi, D., 2006, "A Carbon Nanotube Strain Sensor for Structural Health Monitoring," Smart Materials and Structures, Vol. 15, No. 3, p. 737. https://doi.org/10.1088/0964-1726/15/3/009
  6. Gul, M. and Catbas, F. N., 2011, "Structural Health Monitoring and Damage Assessment Using a novel Time Series Analysis Methodology with Sensor Clustering," Journal of Sound and Vibration, Vol. 330, No. 6, pp. 1196-1210. https://doi.org/10.1016/j.jsv.2010.09.024
  7. Hwang, H. Y., 2008, "Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method," Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 11, pp. 918-923. https://doi.org/10.3795/KSME-A.2008.32.11.918
  8. Levassort, F, Tran-Huu-Hue, P., Ringaard, E. and Lethiecq, M., 2001, "High-Frequency and High-Temperature Electromechanical Performances of New PZT-PNN Piezoceramics," Journal of the European Ceramic Society, Vol. 21, No. 10, pp. 1361-1365. https://doi.org/10.1016/S0955-2219(01)00019-X
  9. Lin, X., and F. G. Yuan., 2005, "Experimental Study Applying a Migration Technique in Structural Health Monitoring," Structural Health Monitoring, Vol. 4, No. 4, pp. 341-353. https://doi.org/10.1177/1475921705057973
  10. Ueberschlag, P., 2001, "PVDF Piezoelectric Polymer," Sensor Review, Vol. 21, No. 2, pp. 118-126. https://doi.org/10.1108/02602280110388315
  11. Luo, H., and S. Hanagud., 1999 "PVDF Film Sensor and Its Applications in Damage Detection," Journal of Aerospace Engineering, Vol. 12, No. 1, pp. 23-30. https://doi.org/10.1061/(ASCE)0893-1321(1999)12:1(23)
  12. Zhang, Y., 2004 "Piezoelectric Paint Sensor for Nondestructive Structural Condition Monitoring," Proc. SEM X International Congress and Exposition on Experimental and Applied Mechanics, pp. 7-10.
  13. Zhang, Y., 2006 "In Situ Fatigue Crack Detection Using Piezoelectric Paint Sensor," Journal of Intelligent Material Systems and Structures Vol. 17, No. 10, pp. 843-852. https://doi.org/10.1177/1045389X06059957
  14. White, J. R., De Poumeyrol, B., Hale, J. M. and Stephenson, R., 2004 "Piezoelectric Paint: Ceramic- Polymer Composites for Vibration Sensors," Journal of Materials Science, Vol. 39, No. 9, pp. 3105-3114. https://doi.org/10.1023/B:JMSC.0000025839.98785.b9
  15. Payo, I., and Hale, J. M., 2011 "Sensitivity Analysis of Piezoelectric Paint Sensors made up of PZT Ceramic Powder and Water-Based Acrylic Polymer," Sensors and Actuators A: Physical, Vol. 168, No. 1, 77-89. https://doi.org/10.1016/j.sna.2011.04.008
  16. Shiratsuyu, K., Hayashi, K., Ando, A. and Sakabe, Y., 2000 "Piezoelectric Characterization of Low-Temperature-Fired Pb (Zr, Ti) $O_3$-Pb (Ni, Nb) $O_3$ Ceramics," Japanese Journal of Applied Physics, Vol. 39, No. 9S, pp. 5609-5612. https://doi.org/10.1143/JJAP.39.5609
  17. Sirohi, J. and Chopra, I. 2000 "Fundamental Understanding of Piezoelectric Strain Sensors," Journal of Intelligent Material Systems and Structures, Vol. 11, No. 4, pp.246-257. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
  18. Yoo, J.-H. and Lee, S.-H. 2009 "Piezoelectric and Dielectric Properties of Low Temperature Sintered $Pb(Mn_{1/3}Nb_{2/3})_{0.02}(Ni_{1/3}Nb_{2/3})_{0.12}(Zr_xTi_{1-x})_{0.86})O_3$ System Ceramics," Transactions on Electrical and Electronic Materials, Vol. 10, No. 4, pp. 121-124. https://doi.org/10.4313/TEEM.2009.10.4.121
  19. Du, J., Qiu, J., Zhu, K., Ji, H., Pang, X., Luo, J. 2012 "Effects of $Fe_2O_3$ Doping on the Microstructure and Piezoelectric Properties of $0.55Pb(Ni_{1/3}Nb_{2/3})O_3-0.45Pb(Zr_{0.3}Ti_{0.7})O_3$ Ceramics," Materials Letters, Vol. 66, No. 1, pp. 153-155. https://doi.org/10.1016/j.matlet.2011.08.038

Cited by

  1. A Study on Fracture Characteristic of Aluminum Foam by Thickness vol.39, pp.10, 2015, https://doi.org/10.3795/KSME-A.2015.39.10.971