ON THE m-POTENT RANKS OF CERTAIN SEMIGROUPS OF ORIENTATION PRESERVING TRANSFORMATIONS

PING ZHAO, TAIJIE YOU, AND HUABI HU

ABSTRACT. It is known that the ranks of the semigroups $SOP_n, SPOP_n$ and $SSPOP_n$ (the semigroups of orientation preserving singular self-maps, partial and strictly partial transformations on $X_n = \{1, 2, \ldots, n\}$, respectively) are n, $2n$ and $n + 1$, respectively. The idempotent rank, defined as the smallest number of idempotent generating set, of SOP_n and $SSPOP_n$ are the same value as the rank, respectively. Idempotent can be seen as a special case (with $m = 1$) of m-potent. In this paper, we investigate the m-potent ranks, defined as the smallest number of m-potent generating set, of the semigroups $SOP_n, SPOP_n$ and $SSPOP_n$.

Firstly, we characterize the structure of the minimal generating sets of SOP_n. As applications, we obtain that the number of distinct minimal generating sets is $(n - 1)^n!$. Secondly, we show that, for $1 \leq m \leq n - 1$, the m-potent ranks of the semigroups SOP_n and $SPOP_n$ are also n and $2n$, respectively. Finally, we find that the 2-potent rank of $SSPOP_n$ is $n + 1$.

1. Introduction and preliminaries

As usual we denote by \mathcal{PT}_n the monoid of all partial transformations of a finite set X_n with n elements (under composition), by \mathcal{T}_n the submonoid of \mathcal{PT}_n of all full transformations of X_n and by \mathcal{S}_n the symmetric group on X_n, i.e., the subgroup of \mathcal{PT}_n of all injective full transformations (permutations) of X_n. Denote by \mathcal{SPT}_n the semigroup of $\mathcal{PT}_n \setminus \mathcal{S}_n$ of all singular partial transformations and by Sing_n the semigroup $\mathcal{T}_n \setminus \mathcal{S}_n$ of all singular transformations of X_n.

Let now X_n be a chain with n elements, say $X_n = \{1 < 2 < \cdots < n\}$. Let $c = (c_1, c_2, \ldots, c_t)$ be a sequence of t ($t \geq 0$) elements from the chain X_n. We say that c is cyclic if there exists no more than one index $i \in \{1, \ldots, t\}$ such that $c_i > c_{i+1}$, where c_{t+1} denotes c_1. Let $\alpha \in \mathcal{PT}_n$ and suppose that

Received November 28, 2013; Revised February 23, 2014.
2010 Mathematics Subject Classification. 20M20, 20M10.
Key words and phrases. transformation, orientation-preserving, rank, idempotent rank, m-potent rank.

This work is supported by Natural Science Foundation of Guizhou (No.[2013]2225) and National Natural Science Foundation of China (No. 11461014).

©2014 Korean Mathematical Society
The semigroup \(S_{POP} \) consists of the empty mapping and \(< 1\) orientation-preserving if the sequence of its image \((a_1a, \ldots, a_t)\) is cyclic. Denote by \(SPOP_n \) the subsemigroup of \(SPT_n \) of all partial orientation preserving singular transformations, by \(SOP_n \) the subsemigroup \(SPOP_n \cap \text{Sing}_n \) of all orientation preserving singular transformations and by \(SSSPOP_n \) the subsemigroup \(SPOP_n \backslash SOP_n \) of all orientation preserving strictly partial transformations.

Remark 1. In this paper it will always be clear from context when additions are modular.

An element \(a \) of any given semigroup is called \(m\)-potent if \(a^{m+1} = a^m \) and \(a, a^2, \ldots, a^m \) are distinct. In particular, we refer to idempotent as 1-potent. This concept was mentioned in [1, 6, 7].

As usual, the rank of a finite semigroup \(S \) is defined by rank \(S = \min \{|A| : A \subseteq S, \langle A \rangle = S \} \). If \(S \) is generated by its set \(E \) of idempotents, then the idempotent rank of \(S \) is defined by idrank \(S = \min \{|A| : A \subseteq E, \langle A \rangle = S \} \). If \(S \) is generated by its set \(E_m \) of \(m \)-potents, then the \(m \)-potent rank of \(S \) is defined by rank\(m \) \(S = \min \{|A| : A \subseteq E_m, \langle A \rangle = S \} \).

It is known that the ranks of the semigroups \(SOP_n \), \(SPOP_n \) and \(SSSPOP_n \) are \(n, 2n \) and \(n + 1 \), respectively. The idempotent rank of \(SOP_n \) and \(SPOP_n \) are the same value as the rank, respectively (see [8]). In this paper, we investigate the \(m \)-potent ranks of the semigroup \(SOP_n \), \(SPOP_n \) and \(SSSPOP_n \). In Section 2 we characterize the structure of the minimal generating sets of \(SOP_n \). As applications, we prove that the number of distinct minimal generating sets is \((n-1)^{n+1} n!\). Moreover, we show that, for \(1 \leq m \leq n-1 \), the \(m \)-potent ranks of the semigroups \(SOP_n \) and \(SPOP_n \) are \(n \) and \(2n \), respectively. In Section 3 we find that the 2-potent rank of \(SSSPOP_n \) is \(n + 1 \).

Let \(\alpha \in PT_n \). As usual, we write \(\text{im}(\alpha) \) and \(\text{rank}(\alpha) \) for the image of \(\alpha \) and the rank of \(\alpha \), respectively. (The rank of a transformation is defined to be the size of its image.) The kernel of \(\alpha \) is the equivalence \(\ker(\alpha) = \{(x, y) \in X_n \times X_n : \alpha x = y\} \). From Fernandes, Gomes, and Jesus [3], Green’s relations on \(SPOP_n \) are characterized by

\[
\alpha \mathcal{L} \beta \quad \text{if and only if} \quad \text{im}(\alpha) = \text{im}(\beta),
\]

\[
\alpha \mathcal{R} \beta \quad \text{if and only if} \quad \ker(\alpha) = \ker(\beta),
\]

\[
\alpha \mathcal{J} \beta \quad \text{if and only if} \quad \text{rank}(\alpha) = \text{rank}(\beta).
\]

The semigroup \(SPOP_n \) has \(n \) \(\mathcal{J} \)-classes, namely \(J_0, J_1, \ldots, J_{n-1} \), where \(J_0 \) consists of the empty mapping and \(J_r = \{ \alpha \in SPOP_n : \text{rank}(\alpha) = r \} \) for \(1 \leq r \leq n - 1 \). For \(0 \leq r \leq s \leq n \), let

\[
[s, r] = \{ \alpha \in SPOP_n : |\text{dom}(\alpha)| = s, \text{rank}(\alpha) = r \}.
\]

Then \(J_r = \bigcup^n_{i=r} [i, r] \) and \(J_{n-1} = [n, n-1] \cup [n-1, n-1] \). We draw attention to the top \(\mathcal{J} \)-class \(J_{n-1} \). As in [8] we use the notation

\[
L_k = \{ \alpha \in J_{n-1} : \text{im}(\alpha) = X_n \setminus \{k\} \}.
\]
$R_{(k,k+1)} = \{ \alpha \in [n,n-1] : \text{the unique non-singleton class of } \ker(\alpha) \text{ is } \{k,k+1\} \}$
and
$R_k = \{ \alpha \in [n-1,n-1] : \text{dom}(\alpha) = X_n \setminus \{k\} \}, \; k \in X_n$
for \mathcal{L}-classes and \mathcal{R}-classes in J_{n-1}. Hence J_{n-1} has n \mathcal{L}-classes L_1, L_2, \ldots, L_n and $2n$ \mathcal{R}-classes $R_{(1,2)}, R_{(2,3)}, \ldots, R_{(n,1)}, R_1, R_2, \ldots, R_n$.

Gomes and Howie [4] used the notation $[i \rightarrow i - 1]$ for the idempotent e defined by $i e = i - 1, x e = x (x \neq i)$ and the notation $[i \rightarrow i + 1]$ for the idempotent f defined by $i f = i + 1, x f = x (x \neq i)$. They also used the notation $\delta_k, k = 1, 2, \ldots, n$, for the identity mapping on $X_n \setminus \{k\}$.

Let S be a subset of S^{POP}_n. As usual, we denote by $E(S)$ the set of all idempotents of S. Employing the above notation, the set $E(J_{n-1})$ consists of n decreasing idempotents $[i \rightarrow i - 1] (i \in X_n)$, n increasing idempotents $[i \rightarrow i + 1] (i \in X_n)$ and n idempotents δ_k. Notice that $[1 \rightarrow 0] = [1 \rightarrow n]$, $[n \rightarrow n + 1] = [n \rightarrow 1]$, etc., by Remark 1. Let $E_{n-1}^+ = \{ [i \rightarrow i + 1] : i \in X_n \}$
and $E_{n-1}^- = \{ [i + 1 \rightarrow i] : i \in X_n \}$ be the increasing and decreasing idempotent set of $[n,n-1]$, respectively, and let $F_{n-1} = \{ \delta_1, \ldots, \delta_n \}$. Then $E(J_{n-1}) = E_{n-1}^+ \cup E_{n-1}^- \cup F_{n-1}$.

Given a subset U of a semigroup S and $s \in S$, we denote by L_s, R_s and H_s
the \mathcal{L}-class, \mathcal{R}-class and \mathcal{H}-class of s, respectively. For general background on Semigroup Theory, we refer the reader to Howie’s book [5].

2. The m-potent ranks of SOP_n and S^{POP}_n

In this section we characterize the structure of the minimal generating sets of SOP_n. As applications, we prove that the number of distinct minimal generating sets is $(n-1)^n!$. Moreover, we show that, for $1 \leq m \leq n-1$, the m-potent ranks of the semigroups SOP_n and S^{POP}_n are n and $2n$, respectively.

We begin by recalling that Zhao, Xu and Yang [9, Theorem 2.1] proved:

Lemma 2.1. Let $n \geq 3$. Let $G \subseteq E(SOP_n)$. Then
\[(G) = SOP_n \text{ if and only if } E_{n-1}^+ \subseteq G \text{ or } E_{n-1}^- \subseteq G.\]

For any $i, j \in X_n$, let
$H_{(i,i+1)}^{[j]} = R_{(i,i+1)} \cap L_j$ and $H_{(i)}^{[j]} = R_i \cap L_j$.

Notice that each \mathcal{H}-classes contained in $[n,n-1]$ has the form $H_{(i,i+1)}^{[j]}$, for some $i, j \in X_n$, and each \mathcal{H}-classes contained in $[n-1,n-1]$ has the form $H_{(i)}^{[j]}$, for some $i, j \in X_n$. With above notation, we have the following simple observation:

Lemma 2.2. Let $n \geq 3$. Then
$H_{(i,i+1)}^{[k]} H_{(j,j+1)}^{[l]} = H_{(i,i+1)}^{[l]}$ if $k = j$ or $k = j + 1$,
$H_{(i)}^{[k]} H_{(j,j+1)}^{[l]} = H_{(i)}^{[l]}$ if $k = j$ or $k = j + 1$,.
Notice that \(SOP_n \cap J_{n-1} = [n, n-1] \) and \([n, n-1]\) contains \(n \) \(\mathcal{R} \)-classes and \(n \) \(\mathcal{L} \)-classes of \(SOP_n \). Thus the number of \(\mathcal{R} \)-classes and \(\mathcal{L} \)-classes of \(SOP_n \) contained in \([n, n-1]\) are both equal to \(n \).

Lemma 2.3. Let \(n \geq 3 \), and let \(A \) be a nonempty subset of \(SOP_n \) with \(n \) elements. If \(A \) contains exactly one element from each \(\mathcal{R} \)-class and from each \(\mathcal{L} \)-class of \(SOP_n \) contained in \([n, n-1]\), then \(SOP_n = \langle A \rangle \).

Proof. By Lemma 2.1, we have \(SOP_n = \langle E_{n-1}^+ \rangle \). Notice that \(A \subseteq [n, n-1] \subseteq SOP_n \). We shall show that \(E_{n-1}^+ \subseteq \langle A \rangle \) and so \(SOP_n = \langle A \rangle \).

Let \(E_{n-1}^+ (A) = \{ i \to i + 1 \in E_{n-1}^+ : \) there exists \(\alpha \in A \) such that \(\alpha \mathcal{H}[i \to i + 1] \} \) and \(X_n(A) = \{ i \in X_n : i \to i + 1 \notin E_{n-1}^+ (A) \} \).

Let \([i \to i + 1] \in E_{n-1}^+ \). If \([i \to i + 1] \in E_{n-1}^+ (A) \), then there exists \(\alpha \in A \) such that \(\alpha \mathcal{H}[i \to i + 1] \). Since \([i \to i + 1] \) is an idempotent, it follows that \([i \to i + 1] = \alpha^\omega \) for some \(\omega \in \mathbb{N} \), and so \([i \to i + 1] \in \langle A \rangle \). If \([i \to i + 1] \in E_{n-1}^+ \setminus E_{n-1}^+ (A) \), then \(i \in X_n(A) \) and, by the property of \(A \), there exists \(i_1 \in X_n(A) \setminus \{ i \} \) such that \(\alpha_{i_1} \in A \) and \([i \to i + 1] \mathcal{L} \alpha_{i_1} \mathcal{R} [i_1 \to i + 1] \).

Since \(i_1 \in X_n(A) \setminus \{ i \} \), then, by the property of \(A \), there exists \(i_2 \in X_n(A) \setminus \{ i_1 \} \) such that \(\alpha_{i_2} \in A \) and \([i_1 \to i_1 + 1] \mathcal{L} \alpha_{i_2} \mathcal{R} [i_2 \to i_2 + 1] \).

If \(i_2 = i \), then, by Lemma 2.2,

\[
\alpha_{i_2} = \alpha_{i_2} \alpha_{i_1} \in H_{(i_2, i_2 + 1)}^{[i_1]} H_{(i_1, i_1 + 1)}^{[i]} = H_{(i_2, i_2 + 1)}^{[i]} = H_{(i, i + 1)}^{[i]},
\]

Since \([i \to i + 1] \) is an idempotent of the group \(H_{(i, i + 1)}^{[i]} \), it follows that \([i \to i + 1] = (\alpha_{i_2}^\omega) \) for some \(\omega \in \mathbb{N} \), and so \([i \to i + 1] \in \langle A \rangle \). Notice that \(i_2 \in X_n(A) \setminus \{ i_1 \} \). If \(i_2 \neq i \), then, by the property of \(A \), there exists \(i_3 \in X_n(A) \setminus \{ i_1, i_2 \} \) such that \(\alpha_{i_3} \in A \) and \([i_2 \to i_2 + 1] \mathcal{L} \alpha_{i_3} \mathcal{R} [i_3 \to i_3 + 1] \).

Notice that \(i \in X_n(A) \). Continuing this demonstration, by the property of \(A \), there exist distinct \(i_1, i_2, \ldots, i_m-1, i_m \in X_n(A) \) (\(m \leq |X_n(A)| \)) such that \(i_m = i \) and

\[
\alpha_{i_1} \in A \] and \([i \to i + 1] \mathcal{L} \alpha_{i_1} \mathcal{R} [i_1 \to i_1 + 1] \),
\[
\alpha_{i_k} \in A \] and \([i_{k-1} \to i_k - 1 + 1] \mathcal{L} \alpha_{i_k} \mathcal{R} [i_k \to i_k + 1] \),

for \(k \in \{2, \ldots, m\} \). Then, by Lemma 2.2,

\[
\alpha_{i_m} = \alpha_{i_m} \alpha_{i_{m-1}} \cdots \alpha_{i_1}
\in H_{(i_m, i_m + 1)}^{[i_{m-1}]} H_{(i_{m-1}, i_{m-1} + 1)}^{[i_{m-2}]} \cdots H_{(i_2, i_3 + 1)}^{[i_1]} H_{(i_2, i_2 + 1)}^{[i_1]} H_{(i_1, i_1 + 1)}^{[i]}
\]
\[\begin{align*}
&= H^{[i]}_{\{m, \ldots, m+1\}} = H^{[i]}_{\{i, i+1\}}.
\end{align*} \]

Since \([i \to i + 1]\) is an idempotent of the group \(H^{[i]}_{\{i, i+1\}}\), it follows that \([i \to i + 1] = (\alpha^*_m)^\omega\) for some \(\omega \in \mathbb{N}\), and so \([i \to i + 1] \in (A)\). \qed

Since \(\text{SOP}_n\) has rank \(n\) (see \([8, \text{Theorem 2.2}]\)), a generating set of \(\text{SOP}_n\) with \(n\) elements is a minimal generating set. Moreover, if \(\alpha\) is an element of \(\text{SOP}_n\) of rank \(n - 1\) and \(\beta\) and \(\gamma\) are two elements of \(\text{SOP}_n\) such that \(\alpha = \beta \gamma\), then \(\ker(\alpha) = \ker(\beta)\) and \(\im(\alpha) = \im(\gamma)\). Then any generating set of \(\text{SOP}_n\) with \(n\) elements must be the subset having exactly one element from each \(\mathcal{R}\)-class and from each \(\mathcal{L}\)-class of \(\text{SOP}_n\) contained in \([n, n - 1]\). These observations, together with the Lemma 2.3, prove the following result:

Theorem 2.4. Let \(n \geq 3\), and let \(M\) be a nonempty subset of \(\text{SOP}_n\) with \(n\) elements. Then \(M\) is a minimal generating set of \(\text{SOP}_n\) if and only if \(M\) is the subset having exactly one element from each \(\mathcal{R}\)-class and from each \(\mathcal{L}\)-class of \(\text{SOP}_n\) contained in \([n, n - 1]\).

Notice also that each \(\mathcal{R}\)-class of \(\text{SOP}_n\) contained in \([n, n - 1]\) has \(n - 1\) elements (see \([2, \text{Corollary 3.6}]\)). Thus we have the following corollary from Theorem 2.4:

Corollary 2.5. Let \(n \geq 3\), and let \(M\) be a minimal generating set of \(\text{SOP}_n\). Then the number of distinct sets \(M\) is \((n - 1)^n n!\).

Now, consider the permutation \((n\text{-cycle})\) \(g = \begin{pmatrix} 1 & 2 & \cdots & n - 1 & n \\ 2 & 3 & \cdots & s + 1 & s + 2 & \cdots & n \end{pmatrix}\) of \(X_n\). For \(1 \leq s \leq n - 1\) and \(1 \leq i \leq n\), let

\[\alpha^{[s+1]}_{(1,2)} = \begin{pmatrix} 1 & 2 & \cdots & s + 1 & s + 2 & \cdots & n \end{pmatrix} \]

and

\[\alpha^{[s+1]}_{(i+1,i+2)} = g^{-i} \alpha^{[s+1]}_{(1,2)} g^i. \]

Then clearly \(\alpha^{[s+1]}_{(1,2)} \in H^{[s+1]}_{(1,2)}\). Notice also that \(\alpha^{[s+1]}_{(n+1,n+2)} = \alpha^{[s+1]}_{(1,2)}\).

Lemma 2.6. Let \(1 \leq s \leq n - 1\) and \(1 \leq i \leq n\). Then \(\alpha^{[s+1]}_{(i+1,i+2)} \in H^{[s+1]}_{(i+1,i+2)}\) and \(\alpha^{[s+1]}_{(1,2)}\) is \(s\)-potent.

Proof. Since \(g\) is a permutation \((n\text{-cycle})\) of \(X_n\) and \([1 \to 2]\mathcal{R}_n^{[s+1]}\mathcal{L}[s + 1 \to s + 2]\), we have

\[g^{-i}[1 \to 2]\mathcal{R}g^{-i} \alpha^{[s+1]}_{(1,2)} \quad \text{and} \quad \alpha^{[s+1]}_{(1,2)} g^i \mathcal{L}[s + 1 \to s + 2]g^i. \]

Notice that

\[g^{-i}[1 \to 2]g^i = [i + 1 \to i + 2], \quad g^{-i}[s + 1 \to s + 2]g^i = [i + s + 1 \to i + s + 2] \]
and \mathcal{R} (\mathcal{L}) is a right (left) congruence. Then
\[
a_{[i+1]}^{[i+1]}(i+1,i+2) = g^{-1}\alpha_{[1]}^{[i+1]}g'\mathcal{L}g^{-1}[s+1 \to s+2]g^i = [i+1 \to i+2]
\]
and
\[
a_{[i+1]}^{[i+1]}(i+1,i+2) = g^{-1}\alpha_{[1]}^{[i+1]}g'\mathcal{L}g^{-1}[s+1 \to s+2]g^i = [i+1 \to i+2].
\]
Thence $\alpha_{[i]}^{[i]}(i+1,i+2) \in H^{[i+1]}(i+1,i+2)$.

Notice that $\alpha_{[1]}^{[2]}(i+1,i+2)$ is an idempotent and $g^ig^{-1} = 1_X$. Then
\[
(\alpha_{[i]}^{[2]}(i+1,i+2))^2 = g^{-1}(\alpha_{[i]}^{[2]}(i+1,i+2))^2g^i = g^{-1}\alpha_{[i]}^{[2]}(i+1,i+2)g^i = \alpha_{[i]}^{[2]}(i+1,i+2)
\]
and so $\alpha_{[i]}^{[3]}(i+1,i+2)$ is 1-potent. Notice also that, for $2 \leq s \leq n-1$,
\[
(\alpha_{[i]}^{[1]}(i+1,i+2))^k = g^{-1}(\alpha_{[i]}^{[1]}(i+1,i+2))^kg^i = g^{-1}\left(\begin{array}{cccc}
1,2,\ldots,k+1 & k+2 & \cdots & s+1 \\
1 & 2 & \cdots & s+1-k \\
1 & 2 & \cdots & s+2 \\
1 & 2 & \cdots & n
\end{array}\right)g^i,
\]
with $1 \leq k \leq s-1$ and
\[
(\alpha_{[i]}^{[1]}(i+1,i+2))^s = g^{-1}\left(\begin{array}{cccc}
1,2,\ldots,s+1 & s+2 & \cdots & n \\
1 & s+1 & \cdots & n
\end{array}\right)g^i.
\]
Then $(\alpha_{[i]}^{[1]}(i+1,i+2))^{[s+1]} = (\alpha_{[i]}^{[1]}(i+1,i+2))^s$ and
\[
(\alpha_{[i]}^{[1]}(i+1,i+2))^{[s+1]}, (\alpha_{[i]}^{[1]}(i+1,i+2))^{[s+1]}, \ldots, (\alpha_{[i]}^{[1]}(i+1,i+2))^{[s+1]}
\]
are distinct. Hence $\alpha_{[i]}^{[s+1]}(i+1,i+2)$ is s-potent. □

Now, for $1 \leq s \leq n-1$, let
\[
G(s) = \{\alpha_{[i]}^{[s+1]}(i+1,i+2) : 1 \leq i \leq n\}.
\]
Then, by Lemma 2.6, the set $G(s)$ contains exactly one element from each \mathcal{R}-class and from each \mathcal{L}-class of SOP_n contained in $[n,n-1]$. Thus, by Theorem 2.4, $SOP_n = (G(s))$. Notice that $|G(s)| = n$ and the s-potent rank of SOP_n is at least as large as the rank of SOP_n. Recall that the rank and the idempotent rank of SOP_n are both equal to n (see [8, Theorem 2.2]). These observations, together with Lemma 2.6, prove the following result:

Theorem 2.7. Let $1 \leq m \leq n-1$. Then $\operatorname{rank}_m SOP_n = n$.

Now, recall that Zhao [8, Theorem 2.3] proved:

Lemma 2.8. Let $n \geq 3$. Let $G \subseteq E(SPOP_n)$. Then
\[
(G) = SPOP_n \text{ if and only if } E^1_{n-1} \cup F_{n-1} \subseteq G \text{ or } E^0_{n-1} \cup F_{n-1} \subseteq G.
\]

Using Lemma 2.8, it is easy to prove the following result:
Lemma 2.9. Let \(n \geq 3 \). Let \(A \) be a subset of \([n-1, n-1]\). If \(A \) contains one element from each \(R \)-class of \(SPOP_n \) contained in \([n-1, n-1]\), then \(SPOP_n = (E_{n-1}^+ \cup A) \).

Proof. By Lemma 2.8, we have \(SPOP_n = \langle E_{n-1}^+ \cup F_{n-1} \rangle \). We shall show that \(F_{n-1} \subseteq \langle E_{n-1}^+ \cup A \rangle \) and so \(SPOP_n = \langle E_{n-1}^+ \cup A \rangle \). Let \(\delta_i \in F_{n-1} \), then there exists \(\alpha \in A \) such that \(\alpha \delta_i \). Then \(\alpha \in R_i \). Suppose that \(\alpha \in H_{(i)} \) for some \(k \in \{1, 2, \ldots, n\} \). Let \(\beta \in H_{(i)}^{[k]} \). Then, by Lemmas 2.1 and 2.2, \(\beta \in SPOP_n = \langle E_{n-1}^+ \rangle \) and \(\alpha \beta \in H_{(i)}^{[k]} H_{(i)}^{[k+i]} = H_{(i)}^{[i]} \). Since \(\delta_i \) is an idempotent of the group \(H_{(i)}^{[i]} \), it follows that \(\delta_i = (\alpha \beta)\omega \) for some \(\omega \in N \), whence \(\delta_i \in (E_{n-1}^+ \cup A) \). \(\square \)

For \(1 \leq s \leq n-1 \) and \(1 \leq i \leq n \), let
\[
\beta_{[1,s+1]} = \begin{pmatrix} 2 & 3 & \cdots & s+1 & s+2 & \cdots & n \\ 1 & 2 & \cdots & s & s+2 & \cdots & n \end{pmatrix}
\]
and
\[
\beta_{[i+1,s+1]} = g^{-i} \beta_{[1,s+1]} g^i.
\]
Then clearly \(\beta_{[1,s+1]} \in H_{(1)}^{[s+1]} \). Notice also that \(\beta_{[n+1,s+1]} = \beta_{[1,s+1]} \).

Lemma 2.10. Let \(1 \leq s \leq n-1 \) and \(1 \leq i \leq n \). Then \(\beta_{[i+1,s+1]} \in H_{(i+1)}^{[s+1]} \) and \(\beta_{[i+1,s+1]} \) is \((s+1)\)-potent.

Proof. Since \(g \) is a permutation \((n\)-cycle\) of \(X_n \) and \(\delta_i R \beta_{[1,s+1]} \mathcal{L} \delta_{s+1} \), we have
\[
g^{-i} \delta_i R g^{-i} \beta_{[1,s+1]} \text{ and } \beta_{[1,s+1]} g^s \mathcal{L} \delta_{s+1} g^i.
\]
Notice that
\[
g^{-i} \delta_i g^i = \delta_{i+1}, \quad g^{-i} \delta_{s+1} g^i = \delta_{i+s+1}
\]
and \(R \) \((\mathcal{L})\) is a right \((\text{left})\) congruence. We mean \(\delta_{n+j} = \delta_j \) for \(j = 1, 2, \ldots, n \) by Remark 1. Then
\[
\beta_{[i+1,s+1]} = g^{-i} \beta_{[1,s+1]} g^i \mathcal{L} \delta_i g^i = \delta_{i+1},
\]
\[
\beta_{[i+1,s+1]} = g^{-i} \beta_{[1,s+1]} g^i \mathcal{L} g^{-i} \delta_{s+1} g^i = \delta_{i+s+1}.
\]
Hence \(\beta_{[i+1,s+1]} \in H_{(i+1)}^{[s+1]} \).

Notice that \(\beta_{[1,2]} = \begin{pmatrix} 2 & 3 & \cdots & n \\ 1 & 3 & \cdots & n \end{pmatrix} \) and \(g^n g^{-1} = 1_{X_n} \). Then
\[
(\beta_{[1,2]})^2 = g^{-i} (\beta_{[1,2]})^2 g^i = g^{-i} \begin{pmatrix} 3 & \cdots & n \\ 3 & \cdots & n \end{pmatrix} g^i.
\]
Then \((\beta_{[1,2]})^3 = (\beta_{[1,2]})^2 \) and \((\beta_{[1,2]})^4 \), \((\beta_{[1,2]})^2 \) are distinct. Hence \(\beta_{[1,2]} \) is \(2\)-potent. Notice also that, for \(2 \leq s \leq n-1 \),
\[
(\beta_{[i+1,s+1]})^k
\]
\[
= g^{-i} (\beta_{k+1,k+1}^{i+1} g^k)
= g^{-i} \left(\begin{array}{cccc}
 k+1 & k+2 & \cdots & s+1 \\
 1 & 2 & \cdots & s+1-k \\
\end{array} \right) g^i, \quad 1 \leq k \leq s
\]

and
\[
= (\beta_{k+1,k+1}^{i+1})^{s+1} = g^{-i} \left(\begin{array}{cccc}
 s+2 & \cdots & n \\
 s+2 & \cdots & n \\
\end{array} \right) g^i.
\]

Then \((\beta_{[i+1,s+1]}^{i+1})^{s+2} = (\beta_{[i+1,s+1]}^{i+1})^{s+1} and
\[(\beta_{[i+1,s+1]}^{i+1})^1, (\beta_{[i+1,s+1]}^{i+1})^2, \ldots, (\beta_{[i+1,s+1]}^{i+1})^{s+1}
\]
are distinct. Hence \(\beta_{[i+1,s+1]}^{i+1}\) is \((s+1)\)-potent. \(\square\)

For \(1 \leq s \leq n-1\), let
\[
F(s) = \{\beta_{[i+1,s+1]} : 1 \leq i \leq n\}.
\]

Then, by Lemma 2.10, the set \(F(s)\) contains exactly one element from each \(R\)-class and from each \(L\)-class of \(SPOP_n\) contained in \([n-1,n-1]\). Thus, by

Theorem 2.4 and Lemma 2.9, \(SPOP_n = \langle G(s+1) \cup F(s) \rangle\) for \(1 \leq s \leq n-2\). Notice that \(|G(s+1) \cup F(s)| = 2n\) and the \((s+1)\)-potent rank of \(SPOP_n\) is at least as large as the rank of \(SPOP_n\). Recall that the rank and the idempotent rank of \(SPOP_n\) are both equal to \(2n\) (see [8, Theorem 2.9]). These observations, together with Lemmas 2.6 and 2.10, prove the following result:

Theorem 2.11. Let \(1 \leq m \leq n-1\). Then \(\text{rank}_m SPOP_n = 2n\).

3. The 2-potent rank of \(SSPOP_n\)

The subset \(SSPOP_n = SPOP_n \setminus SOP_n\) of strictly partial orientation preserving mappings on \(X_n\) is a subsemigroup of \(SPOP_n\). Since a non-idempotent element in \([n-1,n-1]\) can not be expressed as a product of idempotents of \([n-1,n-1]\), the semigroup \(SSPOP_n\) is not idempotent-generated. Then \(SSPOP_n\) has no \(1\)-potent rank.

Let
\[
\beta = \left(\begin{array}{cccc}
 1 & 2 & \cdots & n-1 \\
 2 & 2 & \cdots & n-1 \\
\end{array} \right),
\]

\[
\alpha_1 = \left(\begin{array}{cccc}
 2 & 3 & \cdots & n-1 \\
 2 & 3 & \cdots & n-1 \\
 1 & 1 & \cdots & 1 \\
\end{array} \right) \in H^{[n]}_{(1)}
\]

and
\[
\alpha_i = \left(\begin{array}{cccc}
 1 & \cdots & i-2 & i-1 & i & i+1 & i+2 & \cdots & n \\
 1 & \cdots & i-2 & i & i+1 & i+2 & \cdots & n \\
\end{array} \right) \in H^{[n]}_{(i)}
\]

for \(2 \leq i \leq n\). Recall that Zhao [8, Lemma 3.3 and Lemma 3.8] proved:

Lemma 3.1. Let \(B = \{\alpha_i : 1 \leq i \leq n\}\) and \(G = B \cup \{\beta\}\). Then \([n-1,n-1] \subseteq \langle B \rangle\) and \(SSPOP_n = \langle G \rangle\).
Now, let
\[\tilde{\beta} = \begin{pmatrix} 1 & 2 & 3 & \cdots & n-2 & n-1 \\ n & 2 & 3 & \cdots & n-2 & n \end{pmatrix}. \]
Then \(\tilde{\beta} \) is 2-potent.

Lemma 3.2. Let \(B = \{ \alpha_i : 1 \leq i \leq n \} \) and \(\tilde{G} = B \cup \{ \tilde{\beta} \} \). Then \(\text{SSPOP}_n = \langle \tilde{G} \rangle \).

Proof. Notice that \(\alpha_i \in [n-1, n-1] \), for \(1 \leq i \leq n \). Then, by Lemma 3.1, \(\text{SSPOP}_n = \langle [n-1, n-1] \cup \{ \beta \} \rangle \). Now, as
\[\beta = \begin{pmatrix} 1 & 2 & 3 & \cdots & n-2 & n-1 \\ n-1 & 1 & 2 & \cdots & n-3 & n-2 \end{pmatrix} \tilde{\beta} \begin{pmatrix} 2 & 3 & \cdots & n-2 & n-1 & n \\ 3 & 4 & \cdots & n-1 & n & 2 \end{pmatrix}, \]
it follows that \(\text{SSPOP}_n = \langle [n-1, n-1] \cup \{ \tilde{\beta} \} \rangle \). Then, again by Lemma 3.1, \(\text{SSPOP}_n = \langle \tilde{G} \rangle \).

Notice that \(|\tilde{G}| = n+1 \), each element of the set \(\tilde{G} \) is 2-potent and the 2-potent rank of \(\text{SSPOP}_n \) is at least as large as the rank of \(\text{SSPOP}_n \). Recall that the rank of \(\text{SSPOP}_n \) is equal to \(n+1 \) (see [8, Theorem 3.1]). These observations, together with Lemma 3.2, prove the following result:

Theorem 3.3. Let \(n \geq 3 \). Then \(\text{rank}_2 \text{SSPOP}_n = n+1 \).

Acknowledgments. The authors would like to thank the anonymous referee for his/her helpful comments and suggestions that helped to improve this paper.

References

PING ZHAO
School of Mathematics and Computer Science
Guizhou Normal University
Guiyang, Guizhou Province 550001, P. R. China
and
Mathematics Teaching & Research Section
Guiyang Medical College
Guiyang, Guizhou Province 550004, P. R. China
E-mail address: zhaoping731108@hotmail.com

TAIJIE YOU
School of Mathematics and Computer Science
Guizhou Normal University
Guiyang, Guizhou Province 550001, P. R. China
E-mail address: taijieyou@163.com

HUABI HU
Department of Medicine Bioengineering
Guiyang Medical College
Guiyang, Guizhou Province 550004, P. R. China
E-mail address: huhuabi@hotmail.com