DOI QR코드

DOI QR Code

Temporal and Spatial Distribution of Benthic Polychaetous Communities in Seomjin River Estuary

섬진강 하구역 저서다모류군집의 시·공간 분포

  • Kang, Sung Hyo (Fisheries Resources Research Institute, Korea Fisheries Resources Agency) ;
  • Lee, Jung Ho (Department of Marine Biotechnology, Anyang University) ;
  • Park, Sung Wan (Faculty of Marine Technology, Chonnam Natinal University) ;
  • Shin, Hyun Chool (Faculty of Marine Technology, Chonnam Natinal University)
  • 강성효 (한국수자원관리공단 수산자원연구소) ;
  • 이정호 (안양대학교 해양바이오시스템공학과) ;
  • 박성완 (전남대학교 해양기술학부) ;
  • 신현출 (전남대학교 해양기술학부)
  • Received : 2014.09.02
  • Accepted : 2014.11.25
  • Published : 2014.11.28

Abstract

This study was investigated to estimate the relations between benthic environments and benthic polychaetous community from April 2012 to February 2013. Twenty four stations were selected sequentially with Seomjin River Estuary from the northern part of Gwangyang Bay. The study area could be divided into three characteristic zones based on salinity, water temperature, dissolved oxygen and pH such as Saline Water Zone (SWZ), Brackish Water Zone (BWZ), and Fresh Water Zone (FWZ). Salinity was above 30.0 psu in SWZ, drastically decreased toward inland in BWZ, and nearly zero psu in FWZ. SWZ showed its specific environmental characters like that water temperature fluctuated with little seasonal change and DO showed the lowest values among three zones, and pH maintained as consistent value without seasonal fluctuation. In FWZ, on the other hand, water temperature showed high seasonal fluctuation, DO showed the highest values among three zones, and pH fluctuated greatly. In sedimentary environment, mud, sand and sand/gravel were found as dominant sedimentary deposits in SWZ, BWZ and FWZ, respectively. Organic matter content and AVS in surface sediment were high in SWZ, while Chl-a content high in FWZ. This study area showed a marked environmental difference between FWZ and SWZ as follows: FWZ has coarse sediment and low salinity, low organic matter content, low AVS in FWZ but SWZ has fine sediment and high salinity, high organic matter content and AVS. Species number and mean density of benthic polychaete community was highest in Saline Water Zone (SWZ), drastically decreased in Brackish Water Zone (BWZ), and lowest in Fresh Water Zone (FWZ). Dominant polychates above 5.0% of individual numbers were 6 taxa. Lumbrineris longifolia, Prionospio cirrifera, Tharyx sp. occurred as main dominant species of all study periods, and Hediste sp., Praxillella affinis, Tylorrhynchus sp. dominantly occurred at some seasons. Inhabiting areas of dominant species were separated characteristically. Representative species in SWZ were Lumbrineris longifolia, Tharyx sp., Mediomastus sp.. Wide-appearing species between SWZ and BWZ were Prionospio cirrifera, Heteromastus filiformis, Aricidea sp.. Characteristic species in FWZ were Tylorrhynchus sp. and Hediste sp.. As the results of cluster analysis and nMDS based on the species composition of polychaetous community, unique station groups were established in SWZ and FWZ. Stations in BWZ were sub-divided into several groups with season. Pearson's correlation analysis and PCA between benthic environments and ecological characteristics of polychaetous community showed that salinity, sediment composition, organic content and dissolved oxygen played a role to determine the temporal and spatial distribution of the ecological characteristics as species number, mean density, abundance of main species, and ecological indices.

본 연구는 섬진강 하구역에서 저서다모류군집의 시 공간적 분포 및 환경 요인과의 상관관계를 파악하기 위해 2012년 4월부터 2013년 2월까지 24개의 정점을 대상으로 소조시 만조 때 조사를 실시하였다. 수질환경요인으로 염도, 수온, 용존산소, pH 등을 측정한 결과를 바탕으로 조사지역은 세 해역으로 구분하였다. 각 정점별 환경 특성 차이에 따라 Saline Water Zone(SWZ), Brackish Water Zone(BWZ), Fresh Water Zone(FWZ)으로 정의하였다. SWZ은 대개 30 psu를 상회하였으며, BWZ에서는 염도가 급격히 감소하였고, FWZ에서는 거의 0 psu를 보였다. SWZ에서는 수온의 계절 변동이 가장 적었으며, DO는 가장 낮은 값을, pH는 시공간적 변동이 거의 없이 일정한 값을 유지하였다. 반면 FWZ에서는 수온의 계절 변동이 심하였으며, DO는 가장 높은 값을, pH는 시공간적 변동이 가장 심하였다. 표층퇴적상은 SWZ에서는 니질(Mud)함량이 높았으며 BWZ에서는 사질(Sand)함량이 높게 나타났고 FWZ에서는 사질(Sand)이나 자갈(Gravel)함량이 높게 나타났다. 그 외 유기물함량과 황화물량은 SWZ에서 높은 값을, Chl-a 량은 FWZ에서 높은 값을 보였다. 조사해역은 염도가 낮으며 유기물 함량, 황화물량이 낮고 조립한 퇴적상을 보이는 Fresh Water Zone과 염도가 높으며, 유기물함량, 황화물량이 높고, 세립한 퇴적상을 보이는 Saline Water Zone으로 조사지역의 환경이 뚜렷이 대비됨을 보여주고 있다. 섬진강 하구역에서 출현한 저서다모류의 출현종수와 서식밀도는 Salline Water Zone에서 가장 높았으며, Brackish Water Zone으로 갈수록 점점 감소하였고, Fresh Water Zone에서 매우 낮았다. Brackish Water Zone의 경우 서식밀도의 계절 변동이 매우 심하였는데, 이는 Prionospio cirrifera의 극우점 출현에 의한 것이다. 섬진강 하구역에서 출현한 저서다모류 중 매 계절 상위 5.0%의 점유율을 보이는 우점종은 총 6종이었다. 이 중 Lumbrineris longifolia, Prionoispio cirrifera, Tharyx sp.는 매 계절 주요 우점종으로 출현하였다. 그 외에 Hediste sp., Praxillella affinis, Tylorrhynchus sp.가 조사 시기에 따라서 우점종으로 출현하기도 하였다. 우점 출현 다모류들은 특징적으로 분포하는 해역이 뚜렷이 구분되었다. Saline Water Zone의 대표적인 종은 Lumbrineris longifolia, Tharyx sp., Mediomastus sp.이었다. Saline Water Zone에서부터 Brackish Water Zone까지의 해역에 폭넓게 걸쳐 출현하는 종은 Prionospio cirrifera, Aricidea sp., Heteromastus filiformis이었다. 그리고 Brackish Water zone의 내륙쪽 정점 일부와 Fresh Water Zone에서는 특징적으로 Tylorrhynchus sp., Hediste sp.가 우점 출현하였다. 섬진강 하구역에서 채집된 저서다모류의 출현종 조성과 정점간 유사도지수에 근거하여 집괴분석(Cluster Analysis) 및 비계량적 다차원척도법(non-metric Multidimensional Scaling)을 실시한 결과, 모든 계절에서 Saline Water Zone과 Fresh Water Zone에 위치하는 정점들은 각각 대표적인 하나의 정점군으로 구분되었다. 반면 Brackish Water Zone의 경우는 계절에 따라 수개의 정점군으로 세분되었다. 저서환경 요인과 저서다모류군집의 생태학적 요인들 간의 Pearson 상관관계분석과 주성분분석(PCA) 결과, 염도, 퇴적상, 유기물함량, DO 등이 저서다모류군집의 제반 생태학적 지수(출현종수, 서식밀도, 주요 종의 출현량, 생태지수)의 공간 분포를 결정짓는데 매우 중요한 역할을 하는 환경요인임이 확인되었다.

Keywords

References

  1. Bilyard, G.R., 1987. The value of benthic infauna in marine pollution monitoring studies. Mar. Pollut. Bull., 18: 581-585. https://doi.org/10.1016/0025-326X(87)90277-3
  2. Bray, J.R. and J.T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr., 27: 325-349. https://doi.org/10.2307/1942268
  3. Choi, J.W. and C.H. Koh. 1984. A study of the polychaetous community in Kwangyang Bay, southern coast of Korea. J. Oceanol. Soc. Kor., 19(2): 153-162.
  4. Choi, J.W. and C.H. Koh. 1994. Macrobenthos community in Keum-Mankyung-Dongjin estuaries and its adjacent coastal region, Korea. J. Oceanol. Soc. Korea, 29(3): 304-318.
  5. Choi, J.W., O.H. Yu and W.J. Lee, 2003. The summer spatial distributional pattern of macrobenthic fauna in Gwangyang Bay, southern soast of Korea. The Sea J. Kor. Soc. Oceanogr., 8(1): 14-28.
  6. Day, J.H., 1981. The estuarine macrofauna. In: Estuarine Ecology with particular reference to southern Africa, edited by Day, J.H., Beukema, Reterdam, pp.147-178.
  7. Hong, J.S., I.S. Seo, C.G. Lee, S.P. Yoon and R.J. Jung, 2000. An ecological feature of benthic macrofauna during summer 1997 in Namdaechon Estuary, Yangyang, Korea. J. Kor. Fish. Soc., 33(3): 230-237.
  8. Hong, J.S. and J.W. Yoo. 1996. Salinity and sediment types as sources of variability in the distribution of the benthic macrofauna in Han Estuarine Bay and Kyonggi Bay, Korea. J. Korean Soc. Oceanogr., 31(4): 217-231.
  9. Jung, R.H., 1996. Effect of the coastal zone development on the marine benthic ecosystem with special reference to the benthic polychaete community in Kwangyan Bay, Korea. PhD Thesis. Inha University.
  10. Kang, S.H., 2014. Temporal and spatial distribution of benthic polychaetous community in the Seomjin River Estuary. MS Thesis. Chonnamnam National University, 61pp.
  11. Kim, Y.H. and H.C. Shin, 2010. A benthic polychaete assemblage off the Korean South Coast (Gwangyang Bay and Yeosu Sound). Fish. Aqua Sci., 13(2): 157-166. https://doi.org/10.5657/fas.2010.13.2.157
  12. Kwon, K.Y., C.H. Kim, C.K. Kang, C.H. Moon, M.O. Park and S.R. Yang. 2002a. Limiting nutrients for phytoplankton growth in the Seomjin River Estuary as determined by algal bioassay experiment. J. Kor. Fish. Soc., 35(5): 455-462.
  13. Kwon, K.Y., D.H. Moon, C.K. Kang and Y.N. Kim, 2002b. Distribution of particulate organic matters along the salinity gradients in the Seomjin River Estuary. J. Kor. Fish. Soc., 35(1): 86-96. https://doi.org/10.5657/kfas.2002.35.1.086
  14. Kwon, K.Y., C.H. Moon and H.S. Yang, 2001a. Behavior of nutrients along the salinity gradients in the Seomjin River Estuary. J. Kor. Fish. Soc., 34(3): 199-206.
  15. Kwon, K.Y., C.H. Moon, J.S. Lee, S.R. Yang, M.O. Park and P.Y. Lee, 2004. Estuarine behavior and flux of nutrients in the Seomjin River Estuary. The Sea J. Kor. Soc. Oceanogr., 9(4): 153-163.
  16. Kwon, K.Y., P.G. Lee, C. Park, C.H. Moon and M.O. Park, 2001b. Biomass and species composition of phytoplankton and zooplankton along the salinity gradients in the Seomjin River Estuary. The Sea J. Kor. Soc. Oceanogr., 6(2): 93-102.
  17. Lee, H.G., J.H. Lee, O.H. Yu and C.K. Kim, 2005. Spatial characteristics of the macrobenthos community near the Nakdong River Estuary, on the southeast coast of Korea. Ocean and Polar Research, 27(2): 135-148. https://doi.org/10.4217/OPR.2005.27.2.135
  18. Lim, H.S. and J.S. Hong, 2002. Spatial distribution of macrozoobenthos along the salinity gradient and sedimentary environment in the Watancheon Estuary, Beobseongpo, southwest coast of Korea. The Sea J. Kor. Soc. Oceanogr., 7(1): 8-19.
  19. Lim, H.S., J.W. Choi and S.D. Choi, 2012. Spatial distribution of macrobenthos in Sueocheon Stream Estuary at the nothern part of Gwangyang Bay, Korea. The Sea J. Kor. Soc. Oceanogr., 17(2): 76-86. https://doi.org/10.7850/jkso.2012.17.2.076
  20. Lorenzen, C.J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  21. Margalef, R., 1958. Information theory in ecology. Gen. Syst. 3: 157-175.
  22. McLusky, D.S., 1971. Ecology of estuaries. Heinemann Publ., London, 144pp.
  23. McLusky, D.S., 1981. The estuarine ecosystem. Blackis and Son Limited. 215pp.
  24. McNaughton, S.J., 1968. Structure and function in California grassland. Ecology, 49: 962-972. https://doi.org/10.2307/1936547
  25. Park, M.O., C.H. Moon, S.Y. Kim, S.R. Yang, K.Y. Kwon and Y.W. Lee, 2001. The species composition of phytoplankton along the salinity gradients in the Seomjin River Estuary in Autumn, 2000: Comparison of HPLC analysis and microscopic observations. Algae, 16(2): 179-188.
  26. Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. T. Theoret. Biol. 13: 131-144. https://doi.org/10.1016/0022-5193(66)90013-0
  27. Shannon, C.E. and W. Weaver, 1963. The mathematical theory of communication. Univ. Illinois, Press, Ubana. 177pp.
  28. Shin, H.C. and C.H. Koh, 1990. Temporal and spatial variation of polychaete community in Kwangyang Bay, southern coast of Korea. J. Oceanol. Soc. Kor., 25(4): 205-216.
  29. Shin, H.C., S.M. Yoon and C.H. Koh, 2001. Spatial distribution of benthic macrofaunal community in Ulsan Bay and Onsan Bay, eastern coast of Korea. The Sea J. Kor. Soc. Oceanogr., 6(3):180-189.
  30. Yang, S.R., H.S. Song, K.C. Kim, C. Park and C.H. Moon, 2005. Changes in environmental factors and primary productivity in the Seomjin River Estuary. The Sea J. Kor. Soc. Oceanogr., 10(3): 164-170.
  31. Yoon, I.B., K.S. Bae and D.S. Kong, 1987. A Study on the physicochemical factors and macrozoobenthos community structure in Naktong Estusry. J. Kor. Soc. Limnol., 20(2): 73-99.
  32. Yoon, I.B., K.S. Bae, Y.J. Bae, S.J. Aw and K.H. Kim, 1986. A Study on the benthic macroinvertebrate community structure according to the four seasons in the Naktong Estuary. J. Kor. Soc. Limnol., 19(3): 19-38.
  33. Yoon, S.P., R.H. Jung, Y.J. Kim, S.G. Kim, M.K. Choi, W.C. Lee, H.T. Oh and S.J. Hong, 2009. Macrobenthic community structure along the environmental gradients of Ulsan Bay, Korea. The Sea J. Kor. Soc. Oceanogr., 14(2): 102-117.

Cited by

  1. Short-term Variations in Spatial Distribution of the Macrozoobenthic Community near the Geum River Estuary, Korea vol.21, pp.4, 2014, https://doi.org/10.7846/jkosmee.2018.21.4.368
  2. Phytoplankton Fuel Fish Food Webs in a Low-Turbidity Temperate Coastal Embayment: A Stable Isotope Approach vol.8, pp.None, 2021, https://doi.org/10.3389/fmars.2021.751551
  3. Community Structure of Macrobenthos in the Southern Tidal Flat of Ganghwa Island, Korea vol.33, pp.1, 2014, https://doi.org/10.13000/jfmse.2021.2.33.1.114