DOI QR코드

DOI QR Code

The Influences of Coastal Upwelling on Phytoplankton Community in the Southern Part of East Sea, Korea

동해 남부 연안 해역에서 냉수대 발생이 식물플랑크톤 군집에 미치는 영향

  • 김아람 (국립수산과학원 수산해양종합정보과) ;
  • 윤석현 (국립수산과학원 수산해양종합정보과) ;
  • 정미희 (해양미세조류연구소) ;
  • 윤상철 (국립수산과학원 수산해양종합정보과) ;
  • 문창호 (부경대학교 해양학과)
  • Received : 2014.06.03
  • Accepted : 2014.11.20
  • Published : 2014.11.28

Abstract

In order to understand environment condition and phytoplankton community before and after coastal upwelling, the influences of upwelling events on phytoplankton community were studied at 18 stations located the Southern part of East Sea, Korea from May to August 2013. The surface water masses showed low temperature and high salinity due to upwelling events at coastal stations (A1, B1, C1). Correlation between temperature and nutrients (DIP, r=-0.218, p<0.01; DIN, r=-0.306, p<0.01; silicate, r=-0.274, p<0.01) was significantly negative. This result could be explained that nutrients were supplied to surface water by the upwelling of bottom water. Phytoplankton communities were composed of 186 species. Phytoplankton abundance were relatively high in May (C1, $726{\times}10^3cells\;L^{-1}$) and July (A1, $539{\times}10^3cells\;L^{-1}$). Total chlorophyll a and micro-size fraction ($&gt;20{\mu}m$) increased at coastal stations in July and August, while phytoplankton abundance and total chl. a was much low in June. Dominant species in June was Pseudo-nitzschia spp. of which the cell size was $309{\mu}m^3$. Cell size of Pseudo-nitzschia spp. was smaller than dominant species in other period. Therefore, the increase in total chloro-phyll a and the size of phytoplankton was resulted in the sufficient supply of nutrients. In contrast, these tendencies were not observed at outside stations. These results suggested that coastal upwelling was an important influencing factor to determine the species composition and standing stock of phytoplankton community in the coastal waters of the Southern part of East Sea, Korea.

냉수대 발생 전 후의 해양 환경과 식물플랑크톤 군집 구조 및 크기를 파악을 위해 여름철 빈번하게 냉수대가 발생되는 동해 남부 해역(울산 정자~부산 일광) 18개 정점에서 2013년 5월부터 8월까지 냉수대 발생 환경 및 식물플랑크톤 군집 구조를 조사하였다. 냉수대는 7월과 8월에 연안 정점(A1, B1, C1)에서 발생하였고, 표층에서 저온 고염의 특성을 보였다. 이 시기에 영양염은 수온과 유의한 음의 상관관계(DIP, r=-0.218, p<0.01; DIN, r=-0.306, p<0.01; silicate, r=-0.274, p<0.01)를 보여, 찬 해수가 분포하는 표층에 영양염이 풍부함을 알 수 있었다. 출현한 식물플랑크톤은 총 186종이었고, 현존량은 5월(C1, $726{\times}10^3cells\;L^{-1}$)과 7월(A1, $539{\times}10^3cells\;L^{-1}$)에 높았다. 또한, 연안 정점에서 총 chl. a 와 소형플랑크톤 chl. a ($&gt;20{\mu}m$)의 농도가 냉수대 발생 시기인 7, 8월에 뚜렷하게 증가한 반면, 수온약층이 형성된 6월에는 현저하게 낮았다. 6월의 우점종은 Pseudo-nitzschia spp.이었고, 그 세포 크기는 $309{\mu}m^3$로 다른 시기의 식물플랑크톤의 1/10 수준에 머무는 작은 크기였다. 이러한 결과는 7월과 8월에 총 chl. a의 증가와 식물플랑크톤의 크기 증가가 냉수대 발생 시에 표층으로 공급된 영양염의 영향임을 시사한다. 이러한 해양 환경 특성과 식물플랑크톤 출현양상은 연안 정점에서 뚜렷하게 보였고, 외측 정점에서는 관찰되지 않았다. 이 연구에서는 동해 남부 해역에서 냉수대가 발생하면 식물플랑크톤의 현존량 증가와 더불어 비교적 크기가 큰 식물플랑크톤의 출현 빈도가 증가하는 현상을 확인하였다. 결과적으로 하계에도 불구하고 동해 남부 연안 해역에서 냉수대 발생에 따른 영양염 공급은 식물플랑크톤 군집조성과 현존량에 상당한 영향을 미치는 것으로 판단된다.

Keywords

References

  1. Agawin, N.S.R., C.M. Duarte, and S. Agusti, 2000. Nutrient and water temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr., 45: 591-600. https://doi.org/10.4319/lo.2000.45.3.0591
  2. Arin, L., X.A.G. Moran, M. Estrada, 2002a. Phytoplankton size distribution and growth rates in the Alboran Sea (SW Mediterranean): short term variability related to mesoscale hydrodynamics. J. Plank. Res., 24: 1019-1033. https://doi.org/10.1093/plankt/24.10.1019
  3. Arin, L., G. Marrase, M. Maar, F. Peters, M.M. Sala, and M. Alcaraz, 2002b. Combined effects of nutrients and small-scale turbulence in a microcosms experiment. I. Dynamics and size distribution of osmotrophic plankton. Aquat. Microb. Ecol., 29: 51-61. https://doi.org/10.3354/ame029051
  4. Cho, H.J., Moon, C.H., Yang, H.S., Kang, W.B., Lee, K.W., 1997. Regeneration processes of nutrients in the polar front area of the East Sea. J. Korean Fish. Soc., 30: 393-407.
  5. Choi, M.Y., D.S. Moon, D.H. Jung, and H.J. Kim, 2012a. Seasonal distribution of water masses and spatio-temporal characteristics of nutrients in the coastal areas of Gangwon province of the Korean East Sea in 2009. J. Kor. Soc., 15: 76-88.
  6. Choi, Y.K., K.Y. Kwon, and J.Y. Yang, 2012b. Descriptive analysis of low saline water in Youngdeuk, the East coast of Korea in 2010. J. Kor. Soc. Mar. Environ. Saf., 18: 379-387. https://doi.org/10.7837/kosomes.2012.18.5.379
  7. Cloern, J.E., R. Dufford, 2005. Phytoplankton community ecology: principles applied in San Francisco Bay. Mar. Ecol. Pro. Ser., 285: 11-28. https://doi.org/10.3354/meps285011
  8. Cullen, J.J., P.J.S. Franks, D.M. Karl, A. Longhurst, 2002. Physical influences on marine ecosystem dynamics. The Sea. 12: 297-336.
  9. Decembrini, F., C. Caroppo, M. Azzaro, 2009. Size structure and production of phytoplankton community and carbon pathways channelling in the Southern Tyrrhenian Sea(Western Mediterranean). Deep-Sea Res. II. 56: 687-699. https://doi.org/10.1016/j.dsr2.2008.07.022
  10. Estrada, M., D. Blasco, 1979. The phases of the phytoplankton community in the Baja California upwelling. Limnol. Oceanogr., 24: 1065-1080. https://doi.org/10.4319/lo.1979.24.6.1065
  11. Herrera, L., R. Escribano, 2006. Factors structuring the phytoplankton community in the upwelling site off El Loa River in northern Chile. J. Mar. Sys., 61: 13-38. https://doi.org/10.1016/j.jmarsys.2005.11.010
  12. Herrera, J., R. Margalef, 1961. Hidrogrfiay fitoplanktcton de las costas de Castellon, de Julio de 1968 a Junio de 1959. Inv. Presq., 20: 17-63.
  13. Hillebrand, H., C.D. Durselen, D. Kirschtel, U. Pollingher, T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35: 403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x
  14. Hyun, B.H., Y.S. Sin, C. Park, S.R. Yang, Y.J. Lee, 2006. Temporal and spatial variations of size-structured phytoplankton in the Asan Bay. Korean J. Environ. Biol., 24: 7-18.
  15. Jennings, B.R., K. Parslow, 1988. Particle size measurement: the equivalent spherical diameter. Proc. R. Soc. Lord. A. 419: 137-149. https://doi.org/10.1098/rspa.1988.0100
  16. John, M., R.R. Bidigare, T.D. Dickey. 1990. Nutrients and mixing, chlorophyll and phytoplankton growth. Deep-Sea Re., 37: 127-143. https://doi.org/10.1016/0198-0149(90)90032-Q
  17. Kang, Y.S., J.K. Choi, H.M. Eum, 2003. Ecological characteristics of phytoplankton communities in the coastal waters of Gori, Wolseong, Ulgin and Younggwang III. Distribution of dominant species and environmental Variables. Algae. 18: 29-47. https://doi.org/10.4490/ALGAE.2003.18.1.029
  18. Kang, Y.S., H.C. Choi, J.H. Lim, I.S. Jeon, J.H. Seo, 2005. Dynamics of the phytoplankton community in the coastal waters of Chuksan harbor, East Sea. Algae. 20: 345-352. https://doi.org/10.4490/ALGAE.2005.20.4.345
  19. Kim, I.N., T.S. Lee, 2004. Physicochemical properties and the origin of summer bottom cold waters in the Korea strait. Oce. Pol. Res., 26: 595-606. https://doi.org/10.4217/OPR.2004.26.4.595
  20. Kim, D.S., K.H. Kim, J.H. Shim, S.J. Yoo, 2007. The effect of anticyclonic eddy on nutrients and chlorophyll during spring and summer in the Ulleung Basin, East Sea. J. Kor. Soc. Oceano., 12: 280-286.
  21. Kim, S.W., W.J. Go, L.H. Jang, J.W. Lim, K. Yamada, 2008. Shortterm variability of a summer cold water mass in the southeast coast of Korea using satellite and shipboard data. J. Kor. Soc. Mar. Environ. Saf., pp. 169-171.
  22. Kim, S.W., W.J. Go, S.S. Kim, H.D. Jeong, K. Yamada, 2010. Characteristics of ocean environment before and after coastal upwelling in the southeastern part of Korean peninsula using an in-situ and multi-satellite date. J. Kor. Soc. Mar. Environ. Saf. 16: 345-352.
  23. Lee, Y.S., Y.T. Park, K.Y. Kim, Y.K. Choi, P.Y. Lee, 2006. Characteristics of coastal water quality after diatom blooms due to freshwater inflow. J. Kor. Soc. Mar. Environ. Saf., 12: 75-79.
  24. Ministry of Land, Transport and Maritime Affairs (MOLIT), 2009, Study on the abnormal oceanic conditions variability in the East Sea of Korea in summer using satellite data, 79pp.
  25. Ministry of Maritime Affairs and Fisheries (MOF), 2010, Standard method of marine environment process test, 495pp.
  26. National Fisheries Research and Development Institute (NFRDI), 2014a, Oceanographic information of the Korea waters in 2013, 232pp.
  27. National Fisheries Research and Development Institute (NFRDI), 2014b, Harmful algal blooms in Korean coastal waters in 2013, 173pp.
  28. Noh, J.H., S.J. Yoo, M.J. LEE, S.K. Son, W.S. Kim, 2004. A flow cytometric study of autotorophic picoplankton in the tropical Eastern Pacific. Oce. Pol. Res. 26: 273-286. https://doi.org/10.4217/OPR.2004.26.2.273
  29. Oh, H.J., Y.S. Suh, S. Heo, 2004. The relationship between phytoplankton distribution and environmental conditions of the upwelling cold water in the eastern coast of the Korean peninsula. Kor. Asso. Geo. Info. Stu., 7: 166-173.
  30. Oh, H.J., Y.S. Suh, 2006. Temporal and spatial characteristics of chlorophyll a distributions related to the oceanographic conditions in the Korean waters. Kor. Asso. Geo. Info. Stu., 9: 36-45.
  31. Oh, H.J., S.H. Kim, S.Y. Moon, 2008. The characteristics of phytoplankton community of cold water in the around sea of Wando in summer, 2005. J. Environ. Scien., 17: 949-956. https://doi.org/10.5322/JES.2008.17.9.949
  32. Park, J.S., C.K. Kang, K.H. An, 1991. Community structure and spatial distribution of phytoplankton in the polar front region off the east coast of Korea in summer. Bull. Korean Fish. Soc., 24: 237-247.
  33. Shim, J.H., 1994. Illustrated encyclopedia of fauna & flora of Korea. Vol. 34. Marine phytoplankton. Ministry of Education Republic of Korea, 487 pp.
  34. Sliva, A., S. Palma, P.B. Oliveira, M.T. Moita, 2009. Composition and interannual variability of phytoplankton in a coastal upwelling region(Lisbon Bay, Portugal). J. Sea Res., 62: 238-249. https://doi.org/10.1016/j.seares.2009.05.001
  35. Strickland, J.D.H., R.W. Eppley, B.R.D. Mendiola, 1969. Phytoplankton populations, nutrients and phoyosynthesis in Peruvian coastal waters. Inst. Mar. Preu(Callav) Bio., 2: 4-45.
  36. Suh, Y.S., J.D. Hwang, 2005. Study on the cold water occurrence in the Eastern Coast of the Korean peninsula in summer. J. Environ. Scien., 14: 945-953. https://doi.org/10.5322/JES.2005.14.10.945
  37. Takuo O., I. Mitsunori, M.B. Valeriano, T. Haruyoshi, F. Yasuo, 2012. Marine phytoplankton of the Western Pacific. Kouseisha Kouseikaku Co. Ltd., 160 pp.
  38. Tang, D.L., H. Kawamura, A.J. Luis, 2002. Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian sea. Remote Sensing of Environment. 81: 82-89. https://doi.org/10.1016/S0034-4257(01)00334-0
  39. Tomas, C.R., 1997. Identifying marine phytoplankton. Academic Press, San Diego, 858 pp.
  40. Vadrucci, M.R., M. Cabrini, A. Basset, 2007. Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion. Tran. Wat. Bull., 2: 83-102.
  41. Vaillancourt, R.D., J. Marra, M.P. Seki, M.L. Parsons, R.R. Bidigare, 2003. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean. Deep-Sea Res. I. 50: 829-847. https://doi.org/10.1016/S0967-0637(03)00059-1

Cited by

  1. Variability of Phytoplankton Size Structure in Response to Changes in Coastal Upwelling Intensity in the Southwestern East Sea vol.122, pp.12, 2017, https://doi.org/10.1002/2017JC013467
  2. Long-term Variations of Phytoplankton Community in Coastal Waters of Kyoungju City Area vol.28, pp.5, 2016, https://doi.org/10.13000/JFMSE.2016.28.5.1417
  3. The relationship between fish and zooplankton in south-western region of the East Sea using hydroacoustics vol.53, pp.4, 2017, https://doi.org/10.3796/KSFT.2017.53.4.376
  4. Phytoplankton Spring Bloom and Environmental Factors in the Southern East Sea, Korea vol.30, pp.1, 2018, https://doi.org/10.13000/JFMSE.2018.02.30.1.19
  5. 2016년 춘계 울릉도-독도주변해역에서 동해 연안 용승과 시간차에 의한 일차생산력 영향 vol.36, pp.2, 2014, https://doi.org/10.11626/kjeb.2018.36.2.156
  6. Spatio-temporal Distributions of Phytoplankton Community and It’s Variation Characteristics in the Ulsan Coastal Waters, Southern East Sea of Korea vol.22, pp.3, 2019, https://doi.org/10.7846/jkosmee.2019.22.3.159
  7. Influence of Regional Water Temperature Variability on the Flowering Phenology and Sexual Reproduction of the Seagrass Zostera marina in Korean Coastal Waters vol.43, pp.3, 2014, https://doi.org/10.1007/s12237-019-00569-3
  8. Influence of Water Temperature Anomalies on the Growth of Zostera marina Plants Held Under High and Low Irradiance Levels vol.43, pp.3, 2014, https://doi.org/10.1007/s12237-019-00578-2
  9. Factors controlling the vertical zonation of the intertidal seagrass, Zostera japonica in its native range in the northwestern Pacific vol.157, pp.None, 2014, https://doi.org/10.1016/j.marenvres.2020.104959
  10. Ocean Observation System Development and Observation Using Unmanned Wave-Propelled Surface Vehicle vol.24, pp.4, 2021, https://doi.org/10.7846/jkosmee.2021.24.4.312