DOI QR코드

DOI QR Code

Default Bayesian testing for the equality of shape parameters in the inverse Weibull distributions

  • Kang, Sang Gil (Department of Computer and Data Information, Sangji University)
  • Received : 2014.09.26
  • Accepted : 2014.10.27
  • Published : 2014.11.30

Abstract

This article deals with the problem of testing for the equality of the shape parameters in two inverse Weibull distributions. We propose Bayesian hypothesis testing procedures for the equality of the shape parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Keywords

References

  1. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
  2. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). Bayesian Statistics IV, edited by J. M. Bernardo et. al., Oxford University Press, Oxford, 35-60.
  3. Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. https://doi.org/10.1080/01621459.1996.10476668
  4. Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankya B, 60, 1-18.
  5. Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). In Model Selection, Institute of Mathematical Statistics Lecture Notes-Monograph Series, Vol. 38, edited by P. Lahiri, Beachwood Ohio, 135-207.
  6. Calabria, R. and Pulcini, G. (1989). Confidence limits for reliability and tolerance limits in the inverse Weibull distribution. Reliability Engineering and System Safety, 24, 77-85. https://doi.org/10.1016/0951-8320(89)90056-2
  7. Calabria, R. and Pulcini, G. (1992). Bayes probability intervals in a load-strength model. Communications in Statistics: Theory and Methods, 21, 3393-3405. https://doi.org/10.1080/03610929208830986
  8. Calabria, R. and Pulcini, G. (1994). Bayes 2-sample prediction for the inverse Weibull distribution. Communications in Statistics: Theory and Methods, 23, 1811-1824. https://doi.org/10.1080/03610929408831356
  9. Drapella, A. (1993). Complementary Weibull distribution: Unknown or just forgotten. Quality and Reliability Engineering International, 9, 383-385. https://doi.org/10.1002/qre.4680090426
  10. Dumonceaux, R. and Antle, C. E. (1973). Discrimination between the lognormal and Weibull distribution. Technometrics, 15, 923-926. https://doi.org/10.1080/00401706.1973.10489124
  11. Erto, P. (1986). Genesis, properties and identification of the inverse Weibull distribution. Statistica Applicata, 2, 117-128.
  12. Johnson, N., Kotz, S. and Balakrishnan, N. (1995). Continuous univariate distributions, Vol. 2, John Wiley & Sons, Inc., New York.
  13. Kang, S. G., Kim, D. H. and Lee, W. D. (2012). Default Bayesian testing on the common mean of several normal distributions. Journal of Korean Data & Information Science Society, 23, 605-616. https://doi.org/10.7465/jkdi.2012.23.3.605
  14. Kang, S. G., Kim, D. H. and Lee, W. D. (2013). Default Bayesian testing for the scale parameters in two parameter exponential distributions. Journal of the Korean Data & Information Science Society, 24, 949-957. https://doi.org/10.7465/jkdi.2013.24.4.949
  15. Kang, S. G., Kim, D. H. and Lee, W. D. (2014). Noninformative priors for the common shape parameter of the inverse Weibull distributions. Preprint.
  16. Keller, A. Z. and Kamath, A. R. R. (1982). Alternative reliability models for mechanical systems. 3rd International Conference on Reliability and Maintainability, Toulose, France.
  17. Kim, D. H., Kang, S. G. and Lee, W. D. (2014). Noninformative priors for the inverse Weibull distribution. Journal of Statistical Computation and Simulation, 84, 1039-1054. https://doi.org/10.1080/00949655.2012.739171
  18. Kundu, D. and Howlader, H. (2010). Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data. Computational Statistics and Data Analysis, 54, 1547-1558. https://doi.org/10.1016/j.csda.2010.01.003
  19. Maswadah, M. (2003). Conditional con dence interval estimation for the inverse Weibull distribution based on censored generalized order statistics. Journal of Statistical Computation and Simulation, 73, 887-898. https://doi.org/10.1080/0094965031000099140
  20. Mudholkar, G. S. and Kollia, G. D. (1994). Generalized Weibull family: A structural analysis. Communications in Statistics: Theory and Methods, 23, 1149-1171. https://doi.org/10.1080/03610929408831309
  21. Murthy, D. N. P., Xie, M. and Jiang, R. (2004). Weibull models, John Wiley & Sons, New York.
  22. Nelson, W. (1982). Applied life data analysis, John Wiley & Sons, New York.
  23. O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society B, 57, 99-118.
  24. O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118. https://doi.org/10.1007/BF02564428
  25. Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society B, 44, 377-387.