DOI QR코드

DOI QR Code

Morphology and Formation Mechanism of Sn Nanoparticles Synthesized by Modified Polyol Process at Various pH Values

변형 폴리올 공정에서 pH에 따라 합성된 Sn 나노입자의 형상 변화 및 형성기구

  • Shin, Yong Moo (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 신용무 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2014.09.30
  • Accepted : 2014.10.02
  • Published : 2014.11.27

Abstract

To synthesize Sn nanoparticles (NPs) less than 30 nm in diameter, a modified polyol process was conducted at room temperature using a reducing agent, and the effects of different pH values of the initial solutions on the morphology and size of the synthesized Sn NPs were analyzed. tin(II) 2-ethylhexanoate, diethylene glycol, sodium borohydride, polyvinyl pyrrolidone (PVP), and sodium hydroxide were used as a precursor, reaction medium, reducing agent, capping agent, and pH adjusting agent, respectively. It was found by transmission electron microscopy that the morphology of the synthesized Sn NPs varied according to the pH of the initial solution. Moreover, while the size decreased to 11.32 nm with an increase up to 11.66 of the pH value, the size increased rapidly to 39.25 nm with an increase to 12.69. The pH increase up to 11.66 dominantly promoted generation of electrons and increased the amount of initial nucleation in the solution, finally inducing the reduced-size of the Sn particles. However, the additional increase of pH dominantly induced a decrease of PVP by neutralization, which resulted in acceleration of the agglomeration by collisions between particles.

Keywords

References

  1. Y. Sun and Y. Xia, Science, 298, 2176 (2002). https://doi.org/10.1126/science.1077229
  2. J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 32, 435 (1999). https://doi.org/10.1021/ar9700365
  3. S. J. Oldenburg, R. D. Averitt, S. L. Westcott and N. J. Halas, Chem. Phys. Lett., 288(2-4), 243 (1998). https://doi.org/10.1016/S0009-2614(98)00277-2
  4. L. Balan, R. Schneider, D. Billaud and J. Ghanbaja, Mater. Lett., 59(8-9), 1080 (2005). https://doi.org/10.1016/j.matlet.2004.12.010
  5. H. Yu, V. Vuorinen and J. K. Kivilahti, J. Electron. Mater., 36(2), 136 (2007). https://doi.org/10.1007/s11664-006-0028-x
  6. C. D. Zou, Y. L. Gao, B. Yang, X. Z. XIA, Q. J. Zhai, C. Andersson and J. Liu, J. Electron. Mater., 38(2), 351 (2008).
  7. C. Y. Lin, U. S. Mohanty and J. H. Chou, J. Alloys Compd., 472(1-2), 281 (2009). https://doi.org/10.1016/j.jallcom.2008.04.063
  8. L. -Y. Hsiao and J. -G. Duh, Electron. Mater., 35(9), 1755 (2006). https://doi.org/10.1007/s11664-006-0230-x
  9. H. Jiang, K. -S. Moon, F. Hua and C. P. Wong, Chem. Mater., 19(18), 4482 (2007). https://doi.org/10.1021/cm0709976
  10. C. Zou, Y. Gao, B. Yang and Q. Zhai, J. Mater. Sci.: Mater. Electron., 21(10), 868 (2010). https://doi.org/10.1007/s10854-009-0009-y
  11. J. Glazer, J. Electron. Mater., 23(8), 693 (1994). https://doi.org/10.1007/BF02651361
  12. M. Arra, D. Shangguan, D. Xie, J. Sundelin, T. Lepisto and E. Ristolainen, J. Electron. Mater., 33(9), 977 (2004). https://doi.org/10.1007/s11664-004-0025-x
  13. D. H. Ormerod, Circuit World, 26(3), 11 (2000).
  14. S. L. Lai, J. Y. Guo, G. Ramanath and L. H. Allen, Phys. Rev. Lett., 77, 99 (1996). https://doi.org/10.1103/PhysRevLett.77.99
  15. H. Jiang, K. -S. Moon, H. Dong, F. Hua and C. P. Wong, Chem. Phys. Lett., 429(4-6), 492 (2006). https://doi.org/10.1016/j.cplett.2006.08.027
  16. Y. H. Jo, I. Jung, C. S. Choi, I. Kim and H. M. Lee, Nanotechnol., 22, 225701 (2011). https://doi.org/10.1088/0957-4484/22/22/225701
  17. B. W. Chieng and Y. Y. Loo, Mater. Lett., 73, 78 (2012). https://doi.org/10.1016/j.matlet.2012.01.004
  18. Y. Xuan, Q. Li and W. Hu, AlChE J., 49(4), 1038 (2003). https://doi.org/10.1002/aic.690490420
  19. JCPDS card No.86-2264.
  20. Z. Zhang, B. Zhao and L. Hu, J. Solid State Chem., 121, 105 (1996). https://doi.org/10.1006/jssc.1996.0015
  21. S. -S, Chee and J. -H. Lee. Electron. Mater. Lett., 8(1), 53 (2012). https://doi.org/10.1007/s13391-011-0510-3
  22. S. Magdassi, M. Grouchko and A. Kamyshny, Materials, 3(9), 4626 (2010). https://doi.org/10.3390/ma3094626
  23. A. L. Patterson, Phys. Rev., 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978
  24. K. -S. Chou and C. -Y. Ren, Mater. Chem. Phys., 64, 241 (2000). https://doi.org/10.1016/S0254-0584(00)00223-6
  25. D. Mott, J. Galkowski, L. Wang, J. Luo and C. -J. Zhong, Langmuir, 23, 5740 (2007). https://doi.org/10.1021/la0635092