DOI QR코드

DOI QR Code

Refinement Behavior of Magnesium Powder by Attrition Milling Under Different Condition

어트리션 볼밀링 조건 변화에 따른 마그네슘 분말의 미세화 거동

  • Yoo, Hyo-Sang (Korea Institute of Industrial Technology, Automotive Components & Materials R&BD Group) ;
  • Kim, Yong-Ho (Korea Institute of Industrial Technology, Automotive Components & Materials R&BD Group) ;
  • Kim, Jung-Han (Korea Institute of Industrial Technology, Automotive Components & Materials R&BD Group) ;
  • Kim, Tae-Kyung (Jeonbuk Institude of Automotive Technology) ;
  • Son, Hyeon-Taek (Korea Institute of Industrial Technology, Automotive Components & Materials R&BD Group) ;
  • Lee, Seong-Hee (Mokpo National University)
  • 유효상 (한국생산기술연구원 동력부품소재연구실용화그룹) ;
  • 김용호 (한국생산기술연구원 동력부품소재연구실용화그룹) ;
  • 김정한 (한국생산기술연구원 동력부품소재연구실용화그룹) ;
  • 김태경 ((재)전북자동차기술원) ;
  • 손현택 (한국생산기술연구원 동력부품소재연구실용화그룹) ;
  • 이성희 (목포대학교)
  • Received : 2014.09.23
  • Accepted : 2014.10.07
  • Published : 2014.11.27

Abstract

In this research, magnesium powder was prepared by gas atomizing. Refinement behaviors of magnesium powder produced under different conditions were investigated using a mechanical milling (attrition milling) process. Analyses were performed to assess the characterization and comparison of milled powder with different steel ball sizes and milling times. The powders were analyzed by field emission scanning electron microscope, apparent density and powder fluidity. The particle morphology of the Mg powders changed from spherical particles of feed metals to irregular oval particles, then plate type particles, with an increasing milling time. Because of the HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, which results in producing plate-type powders. An increase in ball size and the impact energy of the magnesium powder maximizes the effect of refinement. Furthermore, it is possible to improve the apparent density and fluidity according to the smoothness of the surface of the initial powder.

Keywords

References

  1. G. Y. Yua, Z. L. Liu, Q. D. Wang, W. J. Ding, Mater. Lett., 56, 53 (2002). https://doi.org/10.1016/S0167-577X(02)00417-2
  2. Lihua Liao, Xiuqing Zhang, Haowei Wang, Mat. Lett., 59, 2702 (2005). https://doi.org/10.1016/j.matlet.2005.03.055
  3. Ya Zhang, Xiaoqin Zeng, Liufa Liu, Chen Lu, Hantao Zhou, Qiang Li, Yanping Zhu., Mater. Sci. Eng. A., 373, 320 (2004). https://doi.org/10.1016/j.msea.2004.02.007
  4. Ifeanyi A. Anyanwu, Yasuhiro Gokan, Atsuya Suzuki, Shigeharu Kamado, Yo Kojima, Suguru Takeda, Taketoshi Ishida, Mater. Sci. Eng. A., 380, 93 (2004). https://doi.org/10.1016/j.msea.2004.03.039
  5. S. Bouaricha, J. P. Dodelet, D. Guay, J. Huot, S. Boily and R. Schulz: J. Alloys Compd., 297, 282 (2000). https://doi.org/10.1016/S0925-8388(99)00612-X
  6. C. Chen, G. Zhang, W. Wang and Z. Wang: Mater. Sci. Eng. A 272, 363 (1999). https://doi.org/10.1016/S0921-5093(99)00503-1
  7. Bufferd, A. S., and P. U. Gummeson. "Application outlook for superalloy PM parts(Powder metallurgy superalloy parts, discussing production methods and mechanical properties comparison with conventional process products)." Metal Progress 99, 68 (1971).
  8. J. G. Jang, H. Y. Ra, E. P. Yoon and H. C. Jeong : J. of the Korean Inst. Of Metals, 28(1), 16 (1990).
  9. G. G. Lee, Ryuzo Watanabe, I. P. Park and H. Y. Jeoung: J. Korean. J. Mat. Mater. 33, 888 (1995).
  10. P. S. GiLman and W. D. Nix, Metal. Trans. A., 5, 813 (1981).
  11. E. Yukatake, J. Kaneko and M. Sugamata, Meter. Trans., 44, 452 (2003). https://doi.org/10.2320/matertrans.44.452
  12. H. Tonda and S. Ando, Metal. Mater. Trans. A., 33, 831 (2002).
  13. H. H. Hausner and M. K. Mal: Hand book of Powder Metallurgy, second edition, Chemical Publishing, NewYork, (1982).