DOI QR코드

DOI QR Code

Low-Temperature Electron Transport Properties of La2/3+xTiO3-δ (x = 0, 0.13)

저온에서 La2/3+xTiO3-δ (x = 0, 0.13)세라믹스의 전자전도특성

  • Received : 2014.08.29
  • Accepted : 2014.10.07
  • Published : 2014.11.27

Abstract

The thermoelectric power and dc conductivity of $La_{2/3+x}TiO_{3-{\delta}}$ (x = 0, 0.13) were investigated. The thermoelectric power was negative between 80K and 300K. The measured thermoelectric power of x = 0.13 increased linearly with increased temperatures and was represented by $S_0+BT$. The x = 0 sample exhibited insulating behavior, while the x = 0.13 sample showed metallic behavior. The electric resistivity of x = 0.13 had a linear temperature dependence at high temperatures and a T3/2 dependence below about 100K. On the other hand, the electric resistivity of x = 0 has a linear relation between $ln{\rho}/T$ and 1/T in the range of 200 to 300K, and the activation energy for small polaron hopping was 0.23 eV. The temperature dependence of thermoelectric power and the resistivity of x = 0 suggests that the charge carriers responsible for conduction are strongly localized. This temperature dependence indicates that the charge carrier (x = 0) is an adiabatic small polaron. These experimental results are interpreted in terms of spin (x = 0.13) and small polaron (x = 0) hopping of almost localized Ti 3d electrons.

Keywords

References

  1. A. Fujimori, I. Hase, M. Namatame, Y. Fujishima and Y. Tokura, Phys. Rev. B., 46, 9841 (1992). https://doi.org/10.1103/PhysRevB.46.9841
  2. B. O. Wekks, R. J. Birgeneau, F. C. Chou, Y. Endoh, D. C. Johnston, M. A. Kastner, Y. S. Lee, G. Shirane, J. M. Tranquada and K. Yamada, Z. Phys. B., 100, 536 (1996).
  3. H. Jhans, D. Kim, R. J. Rasmussen and J. M. Honig, Phys. Rev. B., 54, 11224 (1996). https://doi.org/10.1103/PhysRevB.54.11224
  4. H. L. Ju, C. Eylem, J. L. Peng, B. W. Eichhorn and R. L. Greene, Phys. Rev. B., 49, 13335 (1994). https://doi.org/10.1103/PhysRevB.49.13335
  5. M. Onoda and M. Yasumoto, J. Phys.: Condens Matter., 9, 3861 (1997). https://doi.org/10.1088/0953-8984/9/19/007
  6. M. OnodaA and M. Yasumoto, J. Phys.: Condens Matter., 9, 5623 (1997). https://doi.org/10.1088/0953-8984/9/26/010
  7. D. A. Crandles, T. Timusk, J. D. Garrette and J. E. Greedan, Physica. C., 201, 407 (1992). https://doi.org/10.1016/0921-4534(92)90491-T
  8. Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai and Y. Iye, Phys. Rev. Lett., 70, 2126 (1993). https://doi.org/10.1103/PhysRevLett.70.2126
  9. N. Shanthi and D. D. Sarma, Phys. Rev. B., 57, 2153 (1998). https://doi.org/10.1103/PhysRevB.57.2153
  10. I. S. Kim, M. Itoh and T. Nakamura, J. Solid State Chem., 101, 77 (1992). https://doi.org/10.1016/0022-4596(92)90203-8
  11. W. H. Jung, H, Wakai, H. Nakatsugawa, and E. Iguchi, J. Appl. Phys., 88, 2560 (2000). https://doi.org/10.1063/1.1287755
  12. W. H. Jung, J. Phys.: Condens Matter., 10, 8553 (1998). https://doi.org/10.1088/0953-8984/10/38/015
  13. K. Yoshii, J. Solid State. Chem., 149, 354 (2000). https://doi.org/10.1006/jssc.1999.8544
  14. M. Abe and K. Uchino, Mat. Res. Bull., 9, 147 (1974). https://doi.org/10.1016/0025-5408(74)90194-9
  15. I. S. Kim, T, Nakamura, Y. Inagama and M. Itoh, J. Solid State Chem., 113, 281 (1994). https://doi.org/10.1006/jssc.1994.1372
  16. M. Ohtaki, D. Ogura, K. Eguchi and H. Arai, J. Mater. Chem., 4, 653 (1994). https://doi.org/10.1039/jm9940400653
  17. S. Pal, A. Banerjee, E. Rozenberg and B. K. Chauduri, J. Appl. Phys., 89, 4599 (2001). https://doi.org/10.1063/1.1354648
  18. G. Jakob, W. Westerburg, F. Martin and H. Adrian, Phys. Rev. B., 58, 14966 (1998). https://doi.org/10.1103/PhysRevB.58.14966
  19. T. Holstein, Ann. Phys., 8, 343 (1969).
  20. D. Emin and T. Holstein, Ann. Phys., 53, 439 (1969). https://doi.org/10.1016/0003-4916(69)90034-7
  21. I. G. Austin and N.F. Mott, Adv. Phys., 18, 41 (1969). https://doi.org/10.1080/00018736900101267
  22. W. H. Jung, Kor. J. Mater. Res., 18(1), 26 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.1.026
  23. W. H. Jung, Kor. J. Mater. Res., 18(4), 175 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.4.175
  24. W. H. Jung, Kor. J. Mater. Res., 19(4), 186 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.4.186
  25. W. H. Jung, Kor. J. Mater. Res., 20(3), 161 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.3.161
  26. W. H. Jung, Kor. J. Mater. Res., 21(7), 377 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.7.377
  27. G. Amow, N. P. Raju, and J. E. Greeden, J. Solid State. Chem., 155, 177 (2000). https://doi.org/10.1006/jssc.2000.8932
  28. J. Blasco and J. Garcia, J. Phys.: Condens. Matter., 6, 10759 (1994). https://doi.org/10.1088/0953-8984/6/49/017
  29. J. Blasco and J. Garcia, J. Phys.: Condens. Matter., 6, 5875 (1994). https://doi.org/10.1088/0953-8984/6/30/009
  30. N. F. Mott, Adv Phys., 39, 55 (1990). https://doi.org/10.1080/00018739000101471
  31. N. F. Mott, J. Phys.; Condensed Matter., 5, 3487 (1993). https://doi.org/10.1088/0953-8984/5/22/003
  32. K. Sreedhar J. M. Honig, M. Darwin, M. McElfresh, P. M. Shand, J. Xu, B. C, Crooker and J. Spalek, Phys. Rev. B., 46, 6382 (1992). https://doi.org/10.1103/PhysRevB.46.6382
  33. N. River and K. Adkins, J. Phys F.: Met Phys., 5, 1745 (1975). https://doi.org/10.1088/0305-4608/5/9/014
  34. P. J. Ford and J. A. Mydosh, Phys. Rev. B., 14, 2057 (1976). https://doi.org/10.1103/PhysRevB.14.2057
  35. N. Gayathri, A. K. Raychaudhuri, X Q XU, J. L. Peng and R. L. Greene, J. Phys.: Condens. Matter., 10, 1323 (1998). https://doi.org/10.1088/0953-8984/10/6/015
  36. C. Wood and D. Emin, Phys. Rev. B., 29, 4582 (1984). https://doi.org/10.1103/PhysRevB.29.4582
  37. M. F. Hundley and J. J. Neumeier, Phys. Rev. B., 55, 11511 (1997). https://doi.org/10.1103/PhysRevB.55.11511
  38. J. M. D. Coey, M. Viret and S. Von Molnar, Adv. Phys., 48, 167 (1999). https://doi.org/10.1080/000187399243455