DOI QR코드

DOI QR Code

Effects of Pretreatment and Ag Coating Processes Conditions on the Properties of Ag-Coated Cu Flakes

Ag 코팅 Cu 플레이크의 제조에서 전처리 및 Ag 코팅 공정 변화의 효과

  • Kim, Ji Hwan (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 김지환 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2014.10.09
  • Accepted : 2014.10.13
  • Published : 2014.11.27

Abstract

To elucidate the effects of a pretreatment process on the uniformity of Ag electroless plating on Cu flakes, pretreatment time was mainly considered with a mixed solution of 0.15 M ammonium hydroxide and 0.0375 M ammonium sulphate. Optical inspection of Ag-coated Cu flakes determined that the optimal pretreatment time is 120 s. Repetition of the sequence in which Ag plating was done immediately after the pretreatment of 120 s clearly enhanced the plating uniformity. Scanning electron microscopy revealed that holes were formed irregularly on some Cu flakes during the period from the asdropping of an Ag precursor solution to 5 min. The hole formation was judged to be due to continuous removal of Cu on the local surfaces by the repetitive formation and elimination of $Cu_2O$ or $Cu(OH)_2$ layers. However, the increase of the amount of Ag coating suppressed the hole creation and increasingly enhanced the antioxidant property.

Keywords

References

  1. V. Brusic, G. S. Frankel, J. Roldan and R. Saraf, J. Electrochem. Soc., 142(8), 2591 (1995). https://doi.org/10.1149/1.2050058
  2. J. S. Park, J. H. Hwang, J. G. Kim, Y. H. Kim, H. D. Park and S. K. Kang, Kor. J. Mater. Res., 13(1), 18 (2003). https://doi.org/10.3740/MRSK.2003.13.1.018
  3. J. -K. Lee, S. -H. Park and G. -S. Yang, Kor. J. Mater. Res., 18(5), 283 (2008). https://doi.org/10.3740/MRSK.2008.18.5.283
  4. F. Fievet, F. Fievet-Vincent, J. P. Lagier, B. Dumont and M. Figlarz, J. Mater. Chem., 3, 627 (1993). https://doi.org/10.1039/jm9930300627
  5. A. Sinha and B. P. Sharma, Mater. Res. Bull., 37, 407 (2002). https://doi.org/10.1016/S0025-5408(01)00819-4
  6. S. Wu, Mater. Lett., 61, 1125 (2007). https://doi.org/10.1016/j.matlet.2006.06.068
  7. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, Mater. Lett., 57, 3987 (2003). https://doi.org/10.1016/S0167-577X(03)00252-0
  8. D. S. Jung, H. M. Lee, Y. C. Kang and S. B. Park, J. Colloid Interface Sci., 364, 574 (2011). https://doi.org/10.1016/j.jcis.2011.08.033
  9. J. Zhao, D. M. Zhang and J. Zhao, J. Solid State Chem., 184, 2339 (2011). https://doi.org/10.1016/j.jssc.2011.06.032
  10. N. Cabrera and N. F. Mott, Rep. Prog. Phys., 12, 164 (1949).
  11. S. -S. Chee and J. -H. Lee, J. Mater. Chem. C, 2, 5372 (2014). https://doi.org/10.1039/c4tc00509k
  12. H. T. Hai, J. G. ahn, D. J. Kim, J. R. Lee, H. S. Chung and C. O. Kim, Surf. Coat. Technol., 201, 3788 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.025
  13. M. Grouchko, A. Kamyshny and S. Magdassi, J. Mater. Chem., 117, 3057 (2009).
  14. Y. Peng, C. Yang, K. Chen, S. R. Popuri, C. -H. Lee and B. -S. Tang, Appl. Surf. Sci., 263, 38 (2012). https://doi.org/10.1016/j.apsusc.2012.08.066
  15. A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun, J. Phys. Chem. C, 117, 3093 (2013).
  16. M. J. Dignam and D. B. Gibbs, Can. J. Chem., 48, 1242 (1970). https://doi.org/10.1139/v70-205
  17. N. S. Mclntyre, S. Sunder, D. W. Shoesmith and F. W. Stanchell, J. Vac. Sci. Tech., 18, 714 (1981). https://doi.org/10.1116/1.570934
  18. D. W. Shoesmith, S. Sunder, M. G. Bailey, G. J. Wallace and F. W. Stanchell, J. Electroanal. Chem., 143, 153 (1983). https://doi.org/10.1016/S0022-0728(83)80261-7
  19. Y. Plyuto, J. -M. Berquier, C. Jacquiod and C. Ricolleau, Chem. Commun., 1653 (1999)
  20. R. G. Haverkamp and A. T. Marshall, J. Nanopart. Res., 11, 1453 (2009). https://doi.org/10.1007/s11051-008-9533-6
  21. Z. Wang, Z. Zhao and J. Qiu, J. Phys. Chem. Solids, 69, 1296 (2008). https://doi.org/10.1016/j.jpcs.2007.10.089
  22. X. Chen, C. -H. Cui, Z. Guo, J. -H. Liu, X. -J. Huang and S. -H. Yu, Small, 7(7), 858 (2011). https://doi.org/10.1002/smll.201002331
  23. G. Yildiz, H. Catalgil-Giz and F. Kadirgan, J. Appl. Elrctrochem., 30, 71 (2000). https://doi.org/10.1023/A:1003884301844
  24. V. Prokopec, J. Cejkova, P. Matejka and P. Hasal, Surf. Interface Anal., 40, 601 (2008). https://doi.org/10.1002/sia.2774
  25. M. Clupek, V. Prokopec, P. Matejka and K. Volka, J. Raman Spectrosc., 39, 515 (2008). https://doi.org/10.1002/jrs.1872
  26. X. Wen, W. Zhang and S. Yang, Langmuir, 19, 5898 (2003). https://doi.org/10.1021/la0342870
  27. C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu and J. Ma, J. Phys. Chem. B, 108, 17825 (2004). https://doi.org/10.1021/jp046772p

Cited by

  1. Pretreatment Condition of Cu by Ammonium-Based Mixed Solvent and Its Effects on the Fabrication of Ag-Coated Cu Particles vol.26, pp.3, 2016, https://doi.org/10.3740/MRSK.2016.26.3.109
  2. Resistance to Oxidation at 150℃ of Sub-Micrometer Diameter Silver-Coated Copper Particles Produced by Wet Chemical Synthesis and Immersion Plating vol.58, pp.2, 2017, https://doi.org/10.2320/matertrans.MA201601