DOI QR코드

DOI QR Code

Change in Water Contact Angle on Electrospray-Synthesized SiO2 Coated Layers by Plasma Exposure

플라즈마 조사에 의한 전기분무합성 SiO2 코팅층의 물접촉각 변화

  • Kim, Jae-Hun (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Junseong (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Ji Yeong (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Sang Sub (Department of Materials Science and Engineering, Inha University)
  • 김재훈 (인하대학교 신소재공학과) ;
  • 이준성 (인하대학교 신소재공학과) ;
  • 김지영 (인하대학교 신소재공학과) ;
  • 김상섭 (인하대학교 신소재공학과)
  • Received : 2014.07.10
  • Accepted : 2014.10.14
  • Published : 2014.11.27

Abstract

Hydrophilic $SiO_2$ layers were obtained by the atmospheric-pressure plasma treatment. Superhydrophobic $SiO_2$ layers were first deposited by the electrospray deposition method. The electrospunable solution that was prepared based on the solgel method was sprayed on Si (100) substrates. The surface of the electrosprayed $SiO_2$ layers consisted of the agglomeration of nano-sized grains, which led to a very high roughness and revealed a very high contact angle to water droplets over $162^{\circ}$. After having been exposed to the atmospheric $Ar/O_2$ plasma, the observed superhydrophobicity of the $SiO_2$ layers were greatly changed: a dramatic variation of the water contact angle from $162^{\circ}$ to $3^{\circ}$, namely realization of superhydrophillicity. Interestingly, the surface microstructure was almost preserved. According to the XPS analysis, it is more likely that thanks to the plasma exposure, the surface of $SiO_2$ layers will be cleaned in terms of organic species that are hydrophobic-inducing, consequently leading to the hydrophilic nature observed for the plasma-exposed $SiO_2$ layers.

Keywords

References

  1. Y. Chen, Y. Zhang, L. Shi, J. Li, Y. Xin and T. Yang, Appl. Phys. Lett., 101(3), 033701 (2012). https://doi.org/10.1063/1.4737167
  2. M. Kobayashi, Y. Terayama, H. Yamaguchi, M. Terada, D. Murakami, K. Ishihara and A. Takahara, Langmuir, 28(18), 7212 (2012). https://doi.org/10.1021/la301033h
  3. A. Tiraferri, Y. Kang, E. P. Giannelis and M. Elimelech, Environ. Sci. Tech., 46(20), 11135 (2012). https://doi.org/10.1021/es3028617
  4. J. T. Han, S. Kim and A. Karim, Langmuir, 23(5), 2609 (2007).
  5. A. Borras, A. Barranco and A. R. Gonzalez-Elipe, Langmuir, 24(15), 8021 (2008). https://doi.org/10.1021/la800113n
  6. Y. Liu, Z. Lin, W. Lin, K. S. Moon and C. P. Wong, ACS Appl. Mater. Interfaces, 4(8), 3959 (2012). https://doi.org/10.1021/am300778d
  7. T. Y. Liu, P. L. Li, C. W. Liu and C. Gau, Int. J. Heat Mass Tran., 54(1-3), 126 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.060
  8. H. S. Lim, S. G. Lee, D. H. LEE, D. Y. Lee, S. Lee and K. Cho, Adv. Mater., 20(23), 4438 (2008). https://doi.org/10.1002/adma.200801069
  9. S. Song, L. Jing, S. Li, H. Fu and Y. Luan, Mater. Lett., 62(20), 3503 (2008). https://doi.org/10.1016/j.matlet.2008.03.005
  10. X. Zhou, X. Guo, W. Ding and Y. Chen, Appl. Surf. Sci., 255(5), 3371 (2008). https://doi.org/10.1016/j.apsusc.2008.09.080
  11. Y. Liu, B. Wang, E. Li, X. Song, H. Yan and X. Zhang, Colloids Surf., A. 404, 52 (2012). https://doi.org/10.1016/j.colsurfa.2012.04.008
  12. P. C. Chen, L. S. Wan and Z. K. Xu, J. Mater. Chem., 22(42), 22727 (2012). https://doi.org/10.1039/c2jm34203k
  13. W. Huang, W. Deng. M. Lei and H. Huang, Appl. Surf. Sci., 257(11), 4774 (2011). https://doi.org/10.1016/j.apsusc.2010.11.125
  14. S. M. Machado, A. O. Lobo, A. B. L. Sapucahy, F. R. Marciano, E. J. Corat and N. S. Silva, Mater. Sci. Eng. C, 31(7), 1614 (2011). https://doi.org/10.1016/j.msec.2011.06.005
  15. X. Li, X. Du and J. He, Langmuir, 26(16), 13528 (2010). https://doi.org/10.1021/la1016824
  16. B. G. Trewyn, I. I. Slowing, S. Giri, H. T. Chen and V. S. Y. Lin, Acc. Chem. Res., 40(9), (2007) 846. https://doi.org/10.1021/ar600032u
  17. Q. Gao, Q. Zhu and Y. Guo, Ind. Eng. Chem. Res., 48(22), 9797 (2009). https://doi.org/10.1021/ie9005518
  18. X. Liu and J. He, J. Colloid Interf. Sci., 314(1), 341 (2007). https://doi.org/10.1016/j.jcis.2007.05.011
  19. J. H. Wang, L. P. Zhu, B. K. Zhu and Y. Y. Xu, J. Colloid Interf. Sci., 363(2), 676 (2011). https://doi.org/10.1016/j.jcis.2011.07.052
  20. N. Naseri, R. Azimirad, O. Akhavan and A. Z. Moshfegh, J. Phys. Appl. Phys., 40(7), 2089 (2007). https://doi.org/10.1088/0022-3727/40/7/034
  21. C. S. Lee, E. K. Kim, J. Y. Kim and S. S. Kim, Met. Mater. Int., 18(5), 869 (2012). https://doi.org/10.1007/s12540-012-5019-2
  22. A. Jaworek, J. Mater. Sci., 42(1), 266 (2007). https://doi.org/10.1007/s10853-006-0842-9
  23. E. K. Kim, T. Hwang and S. S. Kim, J. Colloid Interf. Sci., 364(2), 561 (2011) https://doi.org/10.1016/j.jcis.2011.08.077
  24. R. N. Wenzel, Ind. Eng. Chem., 28(8), 988 (1936). https://doi.org/10.1021/ie50320a024
  25. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40, 546 (1944). https://doi.org/10.1039/tf9444000546