DOI QR코드

DOI QR Code

Estimation of Dynamic Vertical Displacement using Artificial Neural Network and Axial strain in Girder Bridge

인공신경망과 축방향 변형률을 이용한 거더 교량의 동적 수직 변위 추정

  • 옥수열 (현대건설 토목환경사업본부 토목환경기술개발실) ;
  • 문현수 (연세대학교 사회환경시스템공학부 통합과정) ;
  • 전방조 (에히메(Ehime)대학교 사회환경공학부) ;
  • 임윤묵 (연세대학교 사회환경시스템공학부)
  • Received : 2011.12.20
  • Accepted : 2014.07.18
  • Published : 2014.12.01

Abstract

Dynamic displacements of structures shows general behavior of structures. Generally, It is used to estimate structure condition and trustworthy physical quantity directly. Especially, measuring vertical displacement which is affected by moving load is very important part to find or identify a problem of bridge in advance. However directly measuring vertical displacement of the bridge is difficult because of test conditions and restriction of measuring equipment. In this study, Artificial Neural Network (ANN) is used to suggest estimation method of bridge displacement to overcome constrain conditions, restriction and so on. Horizontal strain and vertical displacement which are measured by appling random moving load on the bridge are applied for learning and verification of ANN. Measured horizontal strain is used to learn ANN to estimate vertical displacement of the bridge. Numerical analysis is used to acquire learning data for axis strain and vertical displacement for applying ANN. Moving load scenario which is made by vehicle type and vehicle distance time using Pearson Type III distribution is applied to analysis modeling to reflect real traffic situation. Estimated vertical displacement in respect of horizontal strain according to learning result using ANN is compared with vertical displacement of experiment and it presents vertical displacement of experiment well.

구조물의 변위이력은 구조물의 전체적인 거동을 나타내는 인자의 시간에 대한 이력이므로 이를 추정하는 것은 매우 중요하며, 일반적으로 구조물의 상태를 평가하는데 있어 직관적으로 신뢰할 수 있는 물리량이다. 특히, 교량의 경우 차량 하중에 의해 발생되는 수직 변위를 알아내는 것은 교량에 발생할 수 있는 문제점을 미연에 확인할 수 있어 매우 중요한 부분이다. 하지만 시공된 교량의 수직 변위를 측정하는 것은 실험여건 및 장비의 제약조건 등으로 인해서 직접적으로 측정하는 것이 매우 힘든 실정이다. 본 연구에서는 대상 교량들에 대한 제약조건을 극복하고 변위응답을 추정할 수 있는 방안을 제시하기 위해 임의의 차량하중에 의해서 측정되는 변형률과 변위를 인공신경망에 적용하였다. 인공신경망에 적용하는 축방향 변형률과 수직방향 변위에 대한 학습 자료를 획득하기 위해서 수치해석을 수행하였으며, 실제 교통 상황을 반영하기 위해서 교량을 통과하는 차량의 종류와 차간 거리에 대한 차량이동하중 시나리오를 작성하여 시공된 교량의 실제 교통상황에 따른 차량 이동 하중이 가해지도록 모델링하였다. 인공신경망을 이용한 학습 결과에 따라 임의의 하중에 의해 발생되는 교량의 변형률에 대한 변위를 추정하였고, 인공신경망을 사용하여 추정된 변위 결과가 수치해석을 통한 변위를 잘 표현하는 것을 확인하였다.

Keywords

References

  1. AASHTO (2002). AASHTO Standard specifications for highway bridges, 17th Edition, Washington, D.C.
  2. AASHTO (2007). AASHTO LRFD bridge design specifications, 4th Edition, Washington, D.C.
  3. Ahmed, K. A., Abdelhady, M. B. A. and Abouelnour, A. M. A. A. (1997). "The improvement of ride comfort of a city bus which is fabricated on a lorry chassis." Engineering Research Journal, Vol. 53 (June).
  4. Cho, N. S. and Kim, N. S. (2008). "Prediction of the static deflection profiles on suspension bridge by using FBG strain sensors." Journal of KSCE, Vol. 28, No. 5A, pp. 699-707 (in Korean).
  5. Chun, P. (2010). Skewed bridge behaviors: Experimental, Analytical, and Numerical Analysis, Ph.D. Dissertation, Wayne state University, Detroit.
  6. Hong, Y. H. (2007). A regularization scheme for displcement reconstruction using acceleration data measured from structures, Master Dissertation, Seoul National University Graduate School, Seoul (in Korean).
  7. Jang, S. J. and Kim, N. S. (2008). "Estimation of displacement response from the measured dynamic strain signals using mode decomposition technique." Jouranl of KSCE, Vol. 28, No. 4A, pp. 507-515 (in Korean).
  8. Kim, B. T., Kim, Y. S. and Lee, W. J. (2000). "Prediction of lateral deflection and maximum bending moment of model piles using artificial neural network." Journal of KGS, Vol. 16, No. 5, pp. 169-178 (in Korean).
  9. Kim, N. S. and Cho, N. S. (2002). "Estimation of bridge delfection using fiber optic bragg-grating sensors." Journal of KSCE, Vol. 22, No. 6A, pp. 1357-1366 (in Korean).
  10. Li, H. (2005). Dynamic response of highway bridges subjected to heavy vehicles, Ph.D. Dissertation, The Florida State University, Panamata.
  11. May, A. D. (1990). Traffic flow fundamentals, Prentice Hall, Englewood Cliffs.
  12. Moon, T. H. (2000). "ANN simulation of the parcel-based land price appraisal." Journal of KPA, Vol. 35, No. 2, pp. 33-42 (in Korean).
  13. Moses, F. (1979). "Weigh-in-Motion system using instrumented bridges." Transportation Engineering Journal, Vol. 105, No. 3, pp. 233-249.
  14. Mussone, L., Rinelli, S. and Reitani, G. (1996). "Estimating the accident probability of a vehicular flow by means of an artificial neural network." Environment and Planning B: Planning and Design, Vol. 23, No. 6, pp. 667-675. https://doi.org/10.1068/b230667
  15. Powell, G. H. and Allahabadi, R. (1988). "Seismic damage prediction by deterministic methods : Concept and Procedure." Earthquake Engineering And Structural Dynamics, Vol. 16, pp. 719-734. https://doi.org/10.1002/eqe.4290160507
  16. Zeng, H. and Bert, C. W. (2003). "Dynamic amplification of bridge/vehicle interaction: A Parametric Study for a Skewed Bridge." Journal of Structural Stability and Dynamics, Vol. 3, No. 1, pp. 71-90. https://doi.org/10.1142/S0219455403000781
  17. Zuo, L. and Nayfeh, S. A. (2003). "Structured H2 optimization of vehicle suspensions based on multi-wheel models." Vehicle System Dynamics, Vol. 40, No. 5, pp. 351-371. https://doi.org/10.1076/vesd.40.5.351.17914