DOI QR코드

DOI QR Code

Preparation of Probabilistic Liquefaction Hazard Map Using Liquefaction Potential Index

액상화 가능 지수를 활용한 확률적 액상화 재해도

  • Chung, Jae-won (Missouri University of Science & Technology) ;
  • Rogers, J. David (Missouri University of Science & Technology)
  • 정재원 (미주리과학기술대학교 지질공학과) ;
  • Received : 2014.08.16
  • Accepted : 2014.10.08
  • Published : 2014.12.01

Abstract

Probabilistic liquefaction hazard map is now widely needed for engineering practice. Based on the Liquefaction Potential Index (LPI) calculated from liquefied and non-liquefied cases, we attempted to estimate probabilities of liquefaction induced ground failures using logistic regression. We then applied this approach for the regional area. LPIs were calculated based on 273 Standard Penetration Tests in the floodplains in the St. Louis area, USA and then interpolated using cokriging with the covariable of peak ground acceleration. Our result shows that some areas of $LPI{\geq}5$, due to soft soil layers and shallow groundwater table, appear probabilities of ground $failure{\geq}0.5$.

공학적 측면에서 확률론적 액상화 재해 작성법이 점차 요구됨에 따라, 본 연구에서는 실제 액상화 피해 현장의 액상화 가능 지수(Liquefaction Potential Index, LPI)를 이용한 로지스틱 회귀분석으로 액상화 피해 확률을 예측하였다. 또한 이 분석을 바탕으로 광역지역의 액상화 재해도 기법을 제시하였다. 사례 연구로서 미국 세인트루이스 지역 홍수평야의 표준관입시험(273 곳) 결과를 대상으로 LPI를 산정하였고 최대지반가속도를 코크리깅의 이차변수로 적용하여 보간하였다. 연구결과, 일부 구역에서 연약지반과 얕은 지하수위로 인해 LPI 값이 5이상으로 나타나, 액상화로 인한 지반 피해 확률이 0.5 이상으로 예측되었다.

Keywords

References

  1. Atkinson, G. M. and Boore, D. M. (2006). "Earthquake ground-motion prediction equations for Eastern North America." Bull, Seism. Soc. Am., Vol. 96, No. 6, pp. 2181-2205. https://doi.org/10.1785/0120050245
  2. Bhattacharya, S., Hyodo, M., Goda, K., Tazoh, T. and Taylor, C. A. (2011). "Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake." Soil Dyn. Earthq. Eng., Vol. 31, pp. 1618-1628. https://doi.org/10.1016/j.soildyn.2011.06.006
  3. Chung, J. W. and Rogers, J. D. (2011). "Simplified method for spatial evaluation of liquefaction potential in the St. Louis area." J. of Geotech. Geoenviron. Eng., Vol. 137, No. 5, pp. 505-515. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000450
  4. Cubrinovski, M., et al. (2011). "Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake." Seismol. Res. Lett., Vol. 82, No. 6, pp. 893-904. https://doi.org/10.1785/gssrl.82.6.893
  5. Grimley, D. A. and Phillips, A. C. (2006). Surficial geology of Madison county, Illinois, llinois state geological survey, Champaign, IL.
  6. Hitchcock, C. S., Loyd, R.C. and Haydon, W. D. (1999). "Mapping liquefaction hazards in Simi Valley, Ventura County, California." Environ. Eng. Geosci., Vol. 5, No. 4, pp. 441-458.
  7. Holzer, T. L. (2008). "Probabilistic liquefaction hazard mapping." Proc., 4th Conf. on Geotechnical Earthquake Engineering and Soil Dynamics, ASCE, Sacramento, CA., pp. 1-32.
  8. Isaaks, E. H. and Srivastava, R. M. (1989). Applied geostatistics, Oxford University Press, New York.
  9. Iwasaki, T. (1986). "Soil liquefaction studies in Japan: State of the Art." Soil Dyn Earthq Eng., Vol. 5, No. 1, pp. 2-68. https://doi.org/10.1016/0267-7261(86)90024-2
  10. Iwasaki, T., Tokida, K., Tatsuoka, F., Watanabe, S., Yasuda, S. and Sato, H. (1982). "Microzonation for soil liquefaction potential using simplified methods." Proc., 3rd Int. Conf. on Microzonation, Seattle, WA. pp. 1319-1330.
  11. JSSMEF. (1993). Manual for zonation on sesimic geotechnical hazards, Japanese Society for Soil Mechanics and Foundations Engineering, Tokyo.
  12. Kramer, S. L. (1996). Geotechnical earthquake engineering, Prentice Hall, Upper Saddle River, New Jersey.
  13. Lee, D. H., Ku C. S. and Yuan, H. (2003). "A study of the liquefaction risk potential at Yuanlin, Taiwan." Eng. Geol., Vol. 71, pp. 97-117.
  14. Mauer, B. W., Green, R. A., Cubrinovski, M. and Bradley, B. A. (2014). "Evaluation of the liquefaction potential index for assessing liquefaction hazard in Christchurch, New Zealand." J. of Geotech. Geoenviron. Eng., Vol. 140, No. 7, p. 04014032. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001117
  15. Obermeier, S. F. (1989). The New Madrid earthquakes: An Engineering-Geologic Interpretation of Relict Liquefaction Features, U.S. Geological Survey Professional, p. 1336-B.
  16. Papathanassiou, G. (2008). "LPI-Based approach for calibrating the severity of liquefaction-Induced failures for assessing the probability of liquefaction surface evidence." Eng. Geol., Vol. 96, pp. 94-104. https://doi.org/10.1016/j.enggeo.2007.10.005
  17. Petersen, M. D., et al. (2008). Documentation for the update of the United States national seismic hazard maps, U.S. Geological Survey Open-File Report -1128.
  18. Seed, H. B. and Idriss, I. M. (1982). Ground motions and soil liquefaction during earthquake, Earthquake Engineering Research Institute Monograph, Oakland, CA.
  19. Seed, H. B. and ldriss, I. M. (1971). "Simplified procedure for evaluating soil liquefaction potential." J. Soil Mech. Found. Div., Vol. 97, pp. 1249-1273.
  20. Seed, H. B., Tokimatsu L. F., Harder, L. F. and Chung, R. M. (1985). "Influence of SPT procedures in soil liquefaction resistance evaluations." J. of Geotech. Eng., Vol. 111, No. 12, pp. 1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
  21. Toprak, S. and Holzer, T. L. (2003). "Liquefaction potential index: Field Assessment." J. of Geotech. Geoenv. Eng., Vol. 129, No. 4, pp. 315-322. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(315)
  22. Tuttle, M. P. (2005). Paleoseismological study in the St. Louis region, Final Technical Report to U.S. Geological Survey.
  23. Wald, D. J. and Allen, T. I. (2007). "Topographic slope as a proxy for seismic site conditions and amplification." Bull. Seism. Soc. Am., Vol. 97. No. 5, pp. 1379-1395. https://doi.org/10.1785/0120060267
  24. Yasuda, S., Harada, K., Ishikawa, K. and Kanemura, Y. (2012). "Characteristics of liquefaction in Tokyo Bay area by the 2011 Great East Japan Earthquake." Soils Found., Vol. 52, No. 5, pp. 793-810. https://doi.org/10.1016/j.sandf.2012.11.004
  25. Youd, T. L., et al. (2001). "Liquefaction resistance of soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils." J. of Geotech. Geoenv. Eng., Vol. 127, No. 10, pp. 817-833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)