DOI QR코드

DOI QR Code

A Review of Technologies for Detection and Measurement of Adulterants in Cereals and Cereal Products

  • Ambrose, Ashabahebwa (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University)
  • Received : 2014.10.15
  • Accepted : 2014.11.12
  • Published : 2014.12.01

Abstract

Purpose: The continued increase in the world population has triggered an increased demand for food. Cereal grains, flour, and their products constitute the staple diet for most of the world's population. This high demand for food, particularly for cereal-based products, has been exploited for commercial gain through adulteration of food materials. We provide a thorough review of the current developments and limitations of modern, nondestructive analytical techniques used for detection of adulterants in cereals and their products and compare them with conventional methods. Results: Adulterated food poses a serious health risks to humans, animals, and the ecosystem in general. Over the last few decades, the adulteration industry has developed fraudulent practices that often outsmart conventional methods of detection and quality control. Therefore, technological advancements to aid in detection and measurement of adulterants in food products and to ensure food quality and safety are critically important to consumers worldwide. Conclusion: There is a continuous demand for development of nondestructive technology to improve the accuracy and efficiency of detection, measurement, and qualification of adulterants in cereals and other food materials.

Keywords

References

  1. Albanell, E., Minarro, B and N. Carrasco. 2012. Detection of low-level gluten content in flour and batter by near infrared reflectance spectroscopy (NIRS). Journal of Cereal Science 56(2):490-495. https://doi.org/10.1016/j.jcs.2012.06.011
  2. Alves, M. R., Casal, S., Oliveira, M. B. P and M. A. Ferreira. 2003. Contribution of FA profile obtained by highresolution GC/ chemometric techniques to the authenticity of green and roasted coffee varieties. Journal of the American Oil Chemists Society 80(6):511-517. https://doi.org/10.1007/s11746-003-0730-0
  3. Arshak, K., Moore, E., Lyons, G. M., Harris, J and S. Clifford. 2004. A review of gas sensors employed in electronic nose applications. Sensor Review 24(2):181-198. https://doi.org/10.1108/02602280410525977
  4. Baravkar, A. A and R. N. Kale. 2011. FT-IR Spectroscopy: Principle, Technique and Mathematics. International Journal of Pharma and Bio Sciences 2(1):513-519.
  5. Boffo, E. F., Tavares, L. A., Ferreira, M. M. C and A. G. Ferreira. 2009. Classification of Brazilian vinegars according to their 1H NMR spectra by pattern recognition analysis. LWT - Food Science and Technology 42(9):1455-1460. https://doi.org/10.1016/j.lwt.2009.05.008
  6. Bras, L. P., Bernardino, S. A., Joao, A. L and J. C. Menezes. 2005. Multiblock PLS as an approach to compare and combine NIR and MIR spectra in calibrations of soybean flour. Chemometrics and Intelligent Laboratory Systems 75(1):91-99. https://doi.org/10.1016/j.chemolab.2004.05.007
  7. Caban, M., Stepnowski, P., Kwiatkowski, M., Migowska N and Kumirska. J. 2011. Determination of ${\beta}$-blockers and ${\beta}$-agonists using gas chromatography and gas chromatography-mass spectrometry - A comparative study of the derivatization step. Journal of Chromatography A 1218(44):8110-8122. https://doi.org/10.1016/j.chroma.2011.08.093
  8. Campbell, A., Singh, N. B and R. N. Sinha. 1976. Bioenergetics of the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Canadian Journal of Zoology 54(5):786-798. https://doi.org/10.1139/z76-088
  9. Cankar, K., Stebih, D., Dreo, T., Zel, J and K. Gruden. 2006. Critical points of DNA quantification by real-time PCR - effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnology 6:37-52. https://doi.org/10.1186/1472-6750-6-37
  10. Cao, B., He, G., Yang, H., Chang, H., Li, S and A. Deng. 2013. Development of a highly sensitive and specific enzymelinked immunosorbent assay (ELISA) for the detection of phenylethanolamine-A in tissue and feed samples and confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Talanta 115:624-630. https://doi.org/10.1016/j.talanta.2013.06.026
  11. Che Man, Y. B., Setiowaty, G and F. R. Van de Voort. 1999. Determination of iodine value of palm oil by Fourier transform infrared spectroscopy. Journal of American Oil Chemists_ Society 76(6):693-699. https://doi.org/10.1007/s11746-999-0161-9
  12. Chen, S., Wang, Y and S. Choi. 2013. Applications and Technology of Electronic Nose for Clinical Diagnosis. Open Journal of Applied Biosensor 2:39-50. https://doi.org/10.4236/ojab.2013.22005
  13. Cocchi, M., Durante, C., Foca, G., Marchetti, A., Tassi, L and A. Ulrici. 2006. Durum wheat adulteration detection by NIR spectroscopy multivariate calibration. Talanta 68(5):1505-1511. https://doi.org/10.1016/j.talanta.2005.08.005
  14. Cozzolino, D. 2014. An overview of the use of infrared spectroscopy and Chemometrics in authenticity and traceability of cereals. Food Research International 60:262-265. https://doi.org/10.1016/j.foodres.2013.08.034
  15. Defernez, M and R. H. Wilson. 1995. Mid-infrared spectroscopy and Chemometrics for determining the type of fruit used in jam. Journal of the Science of Food and Agriculture 67(4):461-467. https://doi.org/10.1002/jsfa.2740670407
  16. Di Anibal, C. V., Marsal, L. F., Callao, M. P and I. Ruisanchez. 2012. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices. Spectrochimica Acta Part A 87:135-141. https://doi.org/10.1016/j.saa.2011.11.027
  17. Di Anibal, C. V., Ruisanchez, I and M. P. Callao. 2011. High-resolution 1H Nuclear Magnetic Resonance spectrometry combined with chemometric treatment to identify adulteration of culinary spices with Sudan dyes. Food Chemistry 124(3):1139-1145. https://doi.org/10.1016/j.foodchem.2010.07.025
  18. Di Anibal, C. V., Ruisanchez, I., Fernandez, M., Forteza, R., Cerda, V and M. P. Callao. 2012. Standardization of UV-visible data in a food adulteration classification problem. Food Chemistry 134(4):2326-2331. https://doi.org/10.1016/j.foodchem.2012.03.100
  19. Doxastakis, G., Zafiriadis, I., Irakli, M., Marlani, H and C. Tananaki. 2002. Lupin, soya and triticale addition to wheat flour doughs and their effect on rheological properties. Food Chemistry 77(2):219-227. https://doi.org/10.1016/S0308-8146(01)00362-4
  20. Gonzalez, M., Lobo, M. G., Mendez, J and A. Carnero. 2005. Detection of colour adulteration in cochineals by spectrophotometric determination of yellow and red pigment groups. Food Control, 16(2):105-112. https://doi.org/10.1016/j.foodcont.2003.12.002
  21. Google images. 2014. Available at: https://www.google.co.kr/search?q=adulterated+bread&newwindow=1&source=lnms&tbm=isch&sa=X&ei=RqP2U9A3inwBdPxgqAK&ved=0CAYQ_AUoAQ&biw=1024&bih=643#newwindow=1&q=eating+smelly+food&tbm=isch.
  22. Haughey, A. S., Graham, S. F., Cancouet, E and C. T. Elliott. 2013. The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chemistry 136(3-4):1557-1561. https://doi.org/10.1016/j.foodchem.2012.01.068
  23. Hernandez, O. M., Fraga, J. M., Jimenez, A. I., Jimenez, F and J. J. Arias. 2014. Characterization of toasted cereal flours from the Canary Islands (gofios). Food Chemistry 151:133-140. https://doi.org/10.1016/j.foodchem.2013.11.039
  24. Iqbal, A., Sun, D and P. Allen. 2014. An overview on principle, techniques and application of hyperspectral imaging with special reference to ham quality evaluation and control. Food Control 46:242-254. https://doi.org/10.1016/j.foodcont.2014.05.024
  25. Jiang, H., Chen, Q and G. Liu. 2014. Monitoring of solid-state fermentation of protein feed by electronic nose and chemometric analysis. Process Biochemistry 49(4): 583-588. https://doi.org/10.1016/j.procbio.2014.01.006
  26. Khakimova, B., Bak, S and S. B. Engelsen. 2014. Highthroughput cereal metabolomics: Current analytical technologies, challenges and perspectives. Journal of Cereal Science 59(3):393-418. https://doi.org/10.1016/j.jcs.2013.10.002
  27. Lakshmi, V. 2012; food adulteration; Journal of science inventions today 1(2):106-113.
  28. Lankmayr, E., Mocak, J., Serdt, K., Balla, B., Wenzl, T., Bandoniene, D., Gfrerer, M and S. Wagner. 2004. Chemometrical classification of pumpkin seed oils using UV-Vis, NIR and FTIR spectra. Journal of Biochem. Biophys. Methods 61(1-2):95-106. https://doi.org/10.1016/j.jbbm.2004.04.007
  29. Lin, H. H and M. A. Cousin. 1987. Evaluation of enzymelinked immunosorbent assay for detection of molds in foods. Journal of Food Sci. 52:1089-1094. https://doi.org/10.1111/j.1365-2621.1987.tb14282.x
  30. Lippolis, V., Pascale, M., Cervellieri, S., Damascelli, A and A. Visconti. 2014. Screening of deoxynivalenol contamination in durum wheat by MOS-based electronic nose and identification of the relevant pattern of volatile compounds. Food Control 37:263-271. https://doi.org/10.1016/j.foodcont.2013.09.048
  31. Lopez, M. I., Trullols, E., Callao, M. P and I. Ruisanche. 2014. Multivariate screening in food adulteration: Untargeted versus targeted modelling. Food Chemistry 147:177-181. https://doi.org/10.1016/j.foodchem.2013.09.139
  32. Lopez, M. I., Ruisanchez, I and M. P. Callao. 2013. Figures of merit of a SERS method for Sudan I determination at traces levels. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 111:237-241. https://doi.org/10.1016/j.saa.2013.04.031
  33. Magni, C., Herndl, A., Sironi, E., Scarafoni, A., Ballabio, C and P. Restani. 2005. One-and two-dimensional electrophoretic identification of IgE-binding polypeptides of Lupinus albus and other legume seeds. Journal of Agriculture and Food Chemistry 53(11):4567-4571. https://doi.org/10.1021/jf0500785
  34. Marcone, M. F., Wang, S., Albabish, W., Nie, S., Somnarain, D and A. Hill. 2013. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Research International 51(2):729-747. https://doi.org/10.1016/j.foodres.2012.12.046
  35. Martin, M. I. G., Moncada, G. W., Perez, C. G., Martin, N. Z. S., Gonzalez, F. L., Ortega, I. L and J. M. Hierro. 2014. Chilean flour and wheat grain: Tracing their origin using near infrared spectroscopy and Chemometrics. Food Chemistry 145:802-806. https://doi.org/10.1016/j.foodchem.2013.08.103
  36. Moe, D., Garbarsch, C and S. Kirkeby. 1994. The protein effect on determination of DNA with Hoechst 33258. Journal of Biochemical and Biophysical Methods 28(4): 263-276. https://doi.org/10.1016/0165-022X(94)90002-7
  37. Notermans, S., Dufrenne, J and P. S. Soentoro. 1988. Detection of molds in nuts and spices: The mold colony counts versus the enzyme-linked immunosorbent assay (ELISA). Journal of Food Science 53(6):1831-1833. https://doi.org/10.1111/j.1365-2621.1988.tb07853.x
  38. Noonan, J. 1981. CRC handbook of food additives. 2nd ed. Florida: CRC Press.
  39. Olguin, C., Laguarda-Miro, N., Pascual, L., Garcia-Breijo, E., Martinez-Manez, R and J. Soto. 2014. An electronic nose for the detection of Sarin, Soman and Tabun mimics and interfering agents. Sensors and Actuators B 202:31-37. https://doi.org/10.1016/j.snb.2014.05.060
  40. Osborne, B. 2000. Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons Ltd.
  41. Parisot, L., Aparicio, C., Moneret-Vautrin, D. A and L. Guerin. 2001. Allergy to lupine flour. Allergy 56(9): 918-919. https://doi.org/10.1034/j.1398-9995.2001.00254.x
  42. Pavino, D., Squadrone, S., Cocchi, M., Martraa, G., Marchis, D and M. C. Abete. 2010. Towards a routine application of vibrational spectroscopy to the detection of bone fragments in feedingstuffs: Use and validation of a NIR scanning microscopy method. Food Chemistry 121(3):826-831. https://doi.org/10.1016/j.foodchem.2009.12.092
  43. Perez, J. M., Throne, J. E., Dowell, F. E and J. E. Baker. 2003. Detection of insect fragments in wheat flour by nearinfrared spectroscopy. Journal of Stored Products Research 39(3):305-312. https://doi.org/10.1016/S0022-474X(02)00021-8
  44. Pierna Fernandez, J. A., Vermeulen, P., Amand, O., Tossens, A., Dardenne, P and V. Baeten. 2012. NIR hyperspectral imaging spectroscopy and chemometrics for the detection of undesirable substances in food and feed. Chemometrics and Intelligent Laboratory Systems 117:233-239. https://doi.org/10.1016/j.chemolab.2012.02.004
  45. Pompei, C., Lucisano, M and N. Ballini. 1985. Use of lupin flour in pasta manufacture. Sciences des Aliments 5: 665-687.
  46. Reid, L. M, O'Donnell, C. P and G. Downey. 2006. Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology 17(7):344-353. https://doi.org/10.1016/j.tifs.2006.01.006
  47. Reid, L. M., O'Donnell, C. P and G. Downey. 2004. Potential of SPME-GC and chemometrics to detect adulteration of soft fruit purees. Journal of Agricultural and Food Chemistry 52(3):421-427. https://doi.org/10.1021/jf034962b
  48. Robertson, A., Upadhyaya, D., Opie, S and J. Sargeant. 1986. An immunochemical method for the measurement of mould contamination in tomato paste. In: Immunoassay for Veterinary and Food Analysis, eds. Moris, B.A., Clifford, M.N. and Jackman, pp. 163-179. New York: Elsevier Applied Science.
  49. Ruiz-Altisent, M., Ruiz-Garcia, L., Moreda, G. P., Lu, R., Hernandez-Sanchez, N and J. Garcia-Ramos. 2010. Sensors for product characterization and quality of specialty crops. Computers and Electronics in Agriculture 74(2):176-194. https://doi.org/10.1016/j.compag.2010.07.002
  50. Salgo, A and S. Gergely. 2012. Analysis of wheat grain development using NIR spectroscopy. Journal of Cereal Science 56(1):31-38. https://doi.org/10.1016/j.jcs.2012.04.011
  51. Scarafoni, A., Ronchi, A and M. Duranti. 2009. A real-time PCR method for the detection and quantification of lupin flour in wheat flour-based matrices. Food Chemistry 115(3):1088-1093. https://doi.org/10.1016/j.foodchem.2008.12.087
  52. Schul, J. 2000. "Carmine" in Natural Food Colorants, eds. G. J. Lauro and F. J. Francis, pp. 1-10. New York: Marcel Decker Inc.
  53. Singh, C. B., Jayas, D. S., Paliwal, J and N. D. G. White. 2007. Fungal detection in wheat using near infrared hyperspectral imaging. Transactions of the ASABE 50(6): 2171-2176. https://doi.org/10.13031/2013.24077
  54. Singh, C. B., Jayas, D. S., Paliwal, J and N. D. G. White. 2009. Detection of insect-damaged wheat kernels using nearinfrared hyperspectral imaging. Journal of Stored Products Research 45(3):151-158. https://doi.org/10.1016/j.jspr.2008.12.002
  55. Sivam, A. S., Sun-Waterhouse, D., Perera, C. O and G. I. N. Waterhouse. 2012. Exploring the interactions between black currant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chemistry 131(3):802-810. https://doi.org/10.1016/j.foodchem.2011.09.047
  56. Sivam, A. S., Sun-Waterhouse, D., Perera, C. O and G. I. N. Waterhouse. 2013. Application of FT-IR and Raman spectroscopy for the study of biopolymers in breads fortified with fibre and polyphenols. Food Research International 50(2):574-585. https://doi.org/10.1016/j.foodres.2011.03.039
  57. Smail, V. W., Fritz, A. K and D. L. Wetzel, 2006. Chemical imaging of intact seeds with NIR focal plane array assists plant breeding. Vibrational Spectroscopy 42(2): 215-221. https://doi.org/10.1016/j.vibspec.2006.02.004
  58. Syahariza, Z. A., Che Man, Y. B., Selamat, J and J. Bakar. 2005. Detection of lard adulteration in cake formulation by Fourier transform infrared (FTIR) spectroscopy. Food Chemistry 92(2):365-371. https://doi.org/10.1016/j.foodchem.2004.10.039
  59. Tsai, G. J and M. A. Cousin. 1990. Enzyme-linked immunosorbent assay for detection of molds in cheese and yogurt. Journal of Dairy Sci. 73(12):3366-3378. https://doi.org/10.3168/jds.S0022-0302(90)79032-7
  60. Tsai, G. J and S. C. Yu. 1999. Detecting Aspergillus parasiticus in cereals by an enzyme-linked immunosorbent assay. International Journal of Food Microbiology 50(3): 181-189. https://doi.org/10.1016/S0168-1605(99)00084-7
  61. Williams, P. C. 1975. Application of near infrared reflectance spectroscopy to analysis of cereal grains and oilseeds. Cereal Chemistry, 52(4):561-576.
  62. Wu, D., Nie, P., Cuello, J., He, Y., Wang, Z and H. Wu. 2011. Application of visible and near infrared spectroscopy for rapid and non-invasive quantification of common adulterants in Spirulina powder. Journal of Food Engineering 102(3):278-286. https://doi.org/10.1016/j.jfoodeng.2010.09.002
  63. Zapotoczny, P. 2011. Discrimination of wheat grain varieties using image analysis and neural networks. Part I. Single kernel texture. Journal of Cereal Science 54(1) 60-68. https://doi.org/10.1016/j.jcs.2011.02.012
  64. Zhang, L and F. C. Tian. 2014. A new kernel discriminant analysis framework for electronic nose recognition. Analytica Chimica Acta 816:8-17. https://doi.org/10.1016/j.aca.2014.01.049

Cited by

  1. Comparative nondestructive measurement of corn seed viability using Fourier transform near-infrared (FT-NIR) and Raman spectroscopy vol.224, 2016, https://doi.org/10.1016/j.snb.2015.10.082
  2. A Classification Method for Seed Viability Assessment with Infrared Thermography vol.17, pp.4, 2017, https://doi.org/10.3390/s17040845
  3. Qualitative Analysis of Traditional Italian Dishes: FTIR Approach vol.10, pp.11, 2018, https://doi.org/10.3390/su10114112