DOI QR코드

DOI QR Code

Non-Invasive Plasma Monitoring Tools and Multivariate Analysis Techniques for Sensitivity Improvement

  • Jang, Haegyu (School of Chemical Engineering, Sungkyunkwan University (SKKU)) ;
  • Lee, Hak-Seung (SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU)) ;
  • Lee, Honyoung (School of Semiconductor and Display Engineering, Sungkyunkwan University (SKKU)) ;
  • Chae, Heeyeop (School of Chemical Engineering, Sungkyunkwan University (SKKU))
  • Received : 2014.11.26
  • Accepted : 2014.11.30
  • Published : 2014.11.30

Abstract

In this article, plasma monitoring tools and mulivariate analysis techniques were reviewed. Optical emission spectroscopy was reviewed for a chemical composition analysis tool and RF V-I probe for a physical analysis tool for plasma monitoring. Multivariate analysis techniques are discussed to the sensitivity improvement. Principal component analysis (PCA) is one of the widely adopted multivariate analysis techniques and its application to end-point detection of plasma etching process is discussed.

Keywords

References

  1. R. Mohan Sankaran (Ed.), Plasma processing of nanomaterials (CRC Press, Florida, 2012), pp. 1-54.
  2. S. J. Pearton. and D. P. Norton, Plasma Process. Polym. 2, 16 (2005) https://doi.org/10.1002/ppap.200400035
  3. P. Mishra, Harsh and S.S. Islam, Superlattice Microst. 64, 399 (2013) https://doi.org/10.1016/j.spmi.2013.10.010
  4. J. M. Stilahn, K. J Trevino and E. R. Fisher, Annu. Rev. Anal. Chem. 1, 261 (2008) https://doi.org/10.1146/annurev.anchem.1.031207.112953
  5. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley-Interscience, New Jersey, 2005), pp. 387-534.
  6. A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications (IEEE PRESS, New York, 1994), pp. 114-150.
  7. C. M. Chou, C. C. Chuang, C. H. Lin, C. J. Chung and J. L. He, Surf. Coat. Tech. 205, 4880 (2011) https://doi.org/10.1016/j.surfcoat.2011.04.074
  8. V. Kudrle, P. Vasina, A. Talsky, M. Mrazkova, O. Stec and J. Janca, J. Phys. D: Appl. Phys. 43, 124020 (2010) https://doi.org/10.1088/0022-3727/43/12/124020
  9. E. Karakas, V. M. Donnelly and D. J. Economou, J. Appl. Phys. 113, 213301 (2013) https://doi.org/10.1063/1.4807298
  10. X. Z. Jiang, Y. X. Liu, S. Yang, W. Q. Lu, Z. H. Bi, X. S. Li and Y. N. Wang, J. Vac. Sci. Technol. A, 29, 011006 (2011)
  11. V. I. Demidov, S. V. Ratynskaia and K. Rypdal, Rev. Sci. Instrum. 73, 3409 (2002) https://doi.org/10.1063/1.1505099
  12. J. Joo, Applied Science & Convergence Technology 23, 161 (2014) https://doi.org/10.5757/ASCT.2014.23.4.161
  13. H. Lee and J. Jung, J. Korean Vac. Soc. 21, 121 (2012) https://doi.org/10.5757/JKVS.2012.21.3.121
  14. A. J. Izenman, Modern Multivariate Statistical Techniques (Springer Science + Business Media, New York, 2008), pp. 107-313, 407-504, 597-632.
  15. Gil Su Son, Yong Han Roh, Geum. Young. Yeom, Su Hong Kim, Myoung Woon Kim, Hyung Chul Cho, J. Korean Vac. Soc. 20, 416 (2011) https://doi.org/10.5757/JKVS.2011.20.6.416
  16. S. A. Linnik and A. V. Gaydaychuk, Vacuum, 103, 28 (2014) https://doi.org/10.1016/j.vacuum.2013.12.001
  17. G. S. Selwyn, AVS monograph series: Optical diagnostic techniques for plasma processing, edited by Woody weed (AVS Press, New Work, 1993), pp 27-80.
  18. Verity Instruments http://www.verityinst.com/pdfs/ Applications_Information.pdf
  19. K. Han, E. S. Yoon, J. Lee, H. Chae, K. H. Han and K. J. Park, Ind. Eng. Chem. Res. 47, 3907 (2008) https://doi.org/10.1021/ie070930s
  20. P. L. S. Thamban, S. Yun, G. Padron-Wells, J. W. Hosch and M. J. Goeckner, J. Vac. Sci. Technol. A, 30, 061303 (2012) https://doi.org/10.1116/1.4756694
  21. K. Han, K. J. Park, H. Chae and E. S. Yoon, Korean J. Chem. Eng. 25, 13 (2008) https://doi.org/10.1007/s11814-008-0003-8
  22. J. W. Coburn and M. Chen, J. Appl. Phys. 51, 3134 (1980) https://doi.org/10.1063/1.328060
  23. R. d'Agostino, F. Cramarossa, S. D. Benedictis and G. Ferraro, J. Appl. Phys. 52, 1259 (1981) https://doi.org/10.1063/1.329748
  24. T. Czerwiec, F. Greer and D. B. Graves, J. Phys. D: Appl. Phys. 38, 4278 (2005) https://doi.org/10.1088/0022-3727/38/24/003
  25. M. Kanoh, M. Yamage and H. Takada, Jpn. J. Appl. Phys. 40, 1457 (2001) https://doi.org/10.1143/JJAP.40.1457
  26. V. M. Donnelly and A. Kornblit, J. Vac. Sci. Technol. A. 31, 050825 (2013) https://doi.org/10.1116/1.4819316
  27. G. Y. Yeom, Plasma Etching Technology, (Miraecom Press, Seoul, 2006), pp 380-394.
  28. K. Ukai and K. Hanazawa, J. Vac. Sci. Technol. 16, 385 (1979) https://doi.org/10.1116/1.569956
  29. G. Fortunato, J. Phys. E Sci. Instrum. 20, 1051 (1987) https://doi.org/10.1088/0022-3735/20/8/020
  30. V. Patel, B. Singh and J. H. Thomas III, Appl. Phys. Lett. 61, 1912 (1992) https://doi.org/10.1063/1.108361
  31. M. N. A. Dewan, P. J. McNally, T. Perova and P. A. F. Herbert, Microelectron. Eng. 65, 25 (2003) https://doi.org/10.1016/S0167-9317(02)00727-X
  32. P. Dubreuil and D. Belharet, Microelectron. Eng. 87, 2275 (2010) https://doi.org/10.1016/j.mee.2010.03.003
  33. H. L. Maynard, E. A. Rietman, J. T. C. Lee and D. E. Ibbotson, J. Electrochem. Soc. 143, 2029 (1996) https://doi.org/10.1149/1.1836944
  34. J. L. Kleber and L. J. Overzet, Plasma Source Sci. Technol. 8, 534 (1999) https://doi.org/10.1088/0963-0252/8/4/303
  35. M. A. Sobolewski, J. Appl. Phys. 100, 063310 (2006) https://doi.org/10.1063/1.2353203
  36. M. A. Sobolewski and D. L. Lahr, J. Vac. Sci. Technol. A, 30, 051303 (2012) https://doi.org/10.1116/1.4737615
  37. M. A, Sobolewski, J. Vac. Sci. Technol. A, 24, 1892 (2006) https://doi.org/10.1116/1.2335862
  38. H. Jang, J. Nam, C. K. Kim and H. Chae, Plasma Process. Polym. 10, 850 (2013)
  39. S. J. Qin, J. Chemometr. 17, 480 (2003) https://doi.org/10.1002/cem.800

Cited by

  1. Effect of Dual Radio Frequency Bias Power on SiO2 Sputter Etching in Inductively Coupled Plasma vol.12, pp.02, 2017, https://doi.org/10.1142/S1793292017500254