DOI QR코드

DOI QR Code

Characterization of Microstructure on Porous Silicon Carbide Prepared by Polymer Replica Template Method

고분자 복제 템플릿 방법을 이용하여 제조된 다공성 탄화규소의 미세구조 특성

  • Lee, Yoon Joo (Energy & Environmental Division, Korea Institute of Ceramic and Technology) ;
  • Kim, Soo Ryong (Energy & Environmental Division, Korea Institute of Ceramic and Technology) ;
  • Kim, Young Hee (Energy & Environmental Division, Korea Institute of Ceramic and Technology) ;
  • Shin, Dong Geun (Energy & Environmental Division, Korea Institute of Ceramic and Technology) ;
  • Won, Ji Yeon (Energy & Environmental Division, Korea Institute of Ceramic and Technology) ;
  • Kwon, Woo Teck (Energy & Environmental Division, Korea Institute of Ceramic and Technology)
  • 이윤주 (한국세라믹기술원 에너지환경소재본부) ;
  • 김수룡 (한국세라믹기술원 에너지환경소재본부) ;
  • 김영희 (한국세라믹기술원 에너지환경소재본부) ;
  • 신동근 (한국세라믹기술원 에너지환경소재본부) ;
  • 원지연 (한국세라믹기술원 에너지환경소재본부) ;
  • 권우택 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2014.10.02
  • Accepted : 2014.11.12
  • Published : 2014.11.30

Abstract

Foam type porous silicon carbide ceramics were fabricated by a polymer replica method using polyurethane foam, carbon black, phenol resin, and silicon powder as raw materials. The influence of the C/Si mole ratio of the ceramic slurry and heat treatment temperature on the porous silicon carbide microstructure was investigated. To characterize the microstructure of porous silicon carbide ceramics, BET, bulk density, X-ray Powder Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were employed. The results revealed that the surface area of the porous silicon carbide ceramics decreases with increased heat treatment temperature and carbon content at the $2^{nd}$ heat treatment stage. The addition of carbon to the ceramic slurry, which was composed of phenol resin and silicon powder, enhanced the direct carbonization reaction of silicon. This is ascribed to a consequent decrease of the wetting angles of carbon to silicon with increasing heat treatment temperature.

Keywords

References

  1. P. Pastila, V. Helanti, A. P. Nikkila, and T. Mantyla, "Environmental Effects on Micro Structure and Strength of SiC based Hot Gas Filters," J. Eur. Ceram. Soc., 21 [9] 1261-68 (2001). https://doi.org/10.1016/S0955-2219(00)00326-5
  2. J. Y. Won, S. R. Kim, Y. H. Kim, D. K. Shin, Y. J. Lee, and W. T. Kwon, "Preparation of Porous Silicon Carbide Foam Using a Polymer Replica Method(in Korean)," J. Environ. Therm. Eng., 11 [1] 6-12 (2014).
  3. Y. Jiao, C. Jiang, Z. Yang, J. Liu, and J. Zhang, "Synthesis of Highly Accessible ZSM-5 Coatings on SiC Foam Support," Microporous Mesoporous Mater., 181 201-07 (2013). https://doi.org/10.1016/j.micromeso.2013.07.013
  4. J. H. Eom, Y. W. Kim, and I. H. Song, "Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane(in Korean)," J. Korean Ceram. Soc., 49 [6] 625-30 (2012). https://doi.org/10.4191/kcers.2012.49.6.625
  5. S. R. Kim, W. T. Kwon, Y. H. Kim, J. I. Kim, Y. J. Lee, H. J. Lee, and S. C. Oh, "Additive Effects on Sintering of Si/SiC Mixtures(in Korean)," Kor. J. Mater. Res., 22 [22] 701-05 (2012). https://doi.org/10.3740/MRSK.2012.22.12.701
  6. A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Processing Routes to Macroporous Ceramics : A Review," J. Am. Ceram. Soc., 89 [6] 1771-89 (2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x
  7. S. Ahmad, M. A. Latif, H. Taib, and A. F. Ismail, "Short Review : Ceramic Fabrication Techniques for Wastewater Treatment Application," Adv. Mat. Res., 795 5-8 (2013). https://doi.org/10.4028/www.scientific.net/AMR.795.5
  8. T. Ota, M. Takahashi, T. Hibi, M. Ozawa, S. Suzuki, Y. Hikichi, and H. Suzuki, "Biomimetic Process for Producing SiC ''Wood''," J. Am. Ceram. Soc., 78 [12] 3409-11 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb07988.x
  9. P. Sepulveda, "Gelcasting Foams for Porous Ceramics," Am. Ceram. Soc. Bull., 76 [10] 61-65 (1997).
  10. I. Fukuura and T. Asano, "Fabrication and Properties of Some Oxide Ceramics: Alumina, Mullite and Zirconia," 165-74 in Fine Ceramics, Ed. by S. Saito. Elsevier, New York, 1985.
  11. X. W. Zhu, D. L. Jiang, S. H. Tan, and Z. Zhang, "Improvement in the Strut Thickness of Reticulated Porous Ceramics," J. Am. Ceram. Soc., 84 [7] 1654-56 (2001).
  12. M. R. Nangrejo and M. J. Edirisinghe, "Porosity and Strength of Silicon Carbide Foams Prepared Using Preceramic Polymer," J. Porous Mater., 9 [2] 131-40 (2002). https://doi.org/10.1023/A:1020834509443
  13. H. Wang, X. Li, J. Yu, and D. Kim, "Fabrication and Characterization of Ordered Macroporous PMS-derived SiC from a Sacrificial Template Method," J. Mater. Chem., 14 1383-86 (2004). https://doi.org/10.1039/b313405a
  14. J. H. Eom, Y. W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics : A review," J. Asian. Ceram. Soc., 1 220-42 (2013). https://doi.org/10.1016/j.jascer.2013.07.003
  15. J. Won, Y. J. Lee, J. I. Kim, Y. Kim, S. R. Kim, H. J. Lee, T. K. Ko, M. Lee, and W. T. Kwon, "A Study on the Pore Structure Control with Heat Treatment Conditions of Waste Tire Carbon Residue," J. Kor. Inst. Res. Recycl., 22 [2] 1-7 (2013).
  16. J. G. Li and H. Hausner, "Wetting and Adhesion in Liquid Silicon/Ceramic Systems," Mater. Lett., 14 329-32 (1992). https://doi.org/10.1016/0167-577X(92)90047-N
  17. Z. Yuan, W. Huang, and K. Mukai "Wettability and Reactivity of Molten Silicon with Various Substrates," Appl. Phys. A, Mater., 78 [4] 617-22 (2004). https://doi.org/10.1007/s00339-002-2001-8
  18. Z. Zhang, F. Wang, X. Yu, Y. Wang, and Y. Yan, "Porous Silicon Carbide Ceramics Produced by a Carbon Foam Derived from Mixtures of Mesophase Pitch and Si Particles," J. Am. Ceram. Soc., 92 [1] 260-63 (2009). https://doi.org/10.1111/j.1551-2916.2008.02842.x

Cited by

  1. Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports vol.52, pp.3, 2015, https://doi.org/10.4191/kcers.2015.52.3.180
  2. Oxidation Resistance, Compressive Strength and Thermal Shock Resistance of SiC Ceramics Prepared by Two Processing Routes vol.12, pp.4, 2014, https://doi.org/10.1007/s12633-019-00147-z
  3. Effect of the processing conditions of reticulated porous alumina on the compressive strength vol.58, pp.4, 2021, https://doi.org/10.1007/s43207-021-00128-2