DOI QR코드

DOI QR Code

Comparative Analysis of Defense Responses in Chocolate Spot-Resistant and -Susceptible Faba Bean (Vicia faba) Cultivars Following Infection by the Necrotrophic Fungus Botrytis fabae

  • El-Komy, Mahmoud H. (Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Kingdom of Saudi Arabia Plant Pathology Institute, Agriculture Research Center (ARC))
  • Received : 2014.06.03
  • Accepted : 2014.08.05
  • Published : 2014.12.01

Abstract

In this study, resistance responses were investigated during the interaction of Botrytis fabae with two faba bean cultivars expressing different levels of resistance against this pathogen, Nubaria (resistant) and Giza 40 (susceptible). Disease severity was assessed on leaves using a rating scale from 1 to 9. Accumulation levels of reactive oxygen species (ROS), lipid peroxidation and antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) were measured in leaf tissues at different times of infection. The expression profiles of two pathogenesis-related proteins (PRPs) encoded by the genes PR-1 and ${\beta}$-1,3-glucanase were also investigated using reverse transcription RT-PCR analysis. The accumulation of these defense responses was induced significantly in both cultivars upon infection with B. fabae compared with un-inoculated controls. The resistant cultivar showed weaker necrotic symptom expression, less ROS accumulation, a lower rate of lipid peroxidation and higher activity of the enzymatic ROS scavenging system compared with susceptible cultivar. Interestingly, ROS accumulated rapidly in the resistant leaf tissues and peaked during the early stages of infection, whereas accumulation was stronger and more intense in the susceptible tissues in later stages. Moreover, the response of the resistant cultivar to infection was earlier and stronger, exhibiting high transcript accumulation of the PR genes. These results indicated that the induction of oxidant/antioxidant responses and the accumulation of PRPs are part of the faba bean defense mechanism against the necrotrophic fungus B. fabae with a different intensity and timing of induction, depending on the resistance levels.

Keywords

References

  1. Abo-Hegazy, S. R. E., El-Badawy, N. F., Mazen, M. M. and Abd El-Menem, H. 2012. Evaluation of Some faba bean genotypes against chocolate spot disease using cDNA fragments of chitinase gene and some traditional methods. Asian J. Agric. Res. 6:60-72. https://doi.org/10.3923/ajar.2012.60.72
  2. Abou-Zeid, N. M., Moustafa, M. S. H., Hassanien, A. M. and Ez-El-Din, I. 1990. Control of chocolate spot disease of faba bean and the effect of fungicides on the behavior of the causal fungus. Agric. Res. Rev. 68:411-421.
  3. Aime, S., Cordier, C., Alabouvette, C. and Olivain, C. 2008. Comparative analysis of PR gene expression in tomato inoculated with virulent Fusarium oxysporum f. sp. lycopersici and the biocontrol strain F. oxysporum Fo47. Physiol. Mol. Plant Pathol. 73:9-15. https://doi.org/10.1016/j.pmpp.2008.10.001
  4. Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  5. Asselbergh, B., Curvers, K., Franca, S. C., Audenaert, K., Vuylsteke, M., Breusegem, F. V. and Hofte, M. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144: 1863-1877. https://doi.org/10.1104/pp.107.099226
  6. Attia, M. F., Abou-Zeid, N. M., Abada, K. A., Soliman, M. H. and El-Badawy, N. F. 2007. Isolation of chitinase gene induced during infection of Vicia faba by Botrytis fabae. Arab J. Biotech. 10:289-300.
  7. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-286. https://doi.org/10.1016/0003-2697(71)90370-8
  8. Bertini, L., Leonardi, L., Caporale, C., Tucci, M., Cascone, N., Di Berardino, I., Buonocore, V. and Caruso, C. 2003. Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Sci. 164:1067-1078. https://doi.org/10.1016/S0168-9452(03)00112-2
  9. Bolwell, P. G., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., Gerrish, C. and Minibayeva, F. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three component system. J. Exp. Bot. 53: 1367-1376. https://doi.org/10.1093/jexbot/53.372.1367
  10. Bouhassan, A., Sadiki, M. and Tivoli, B. 2004. Evaluation of a collection of faba bean (Vicia faba L.) genotypes originating from the Maghreb for resistance to chocolate spot (Botrytis fabae) by assessment in the field and laboratory. Euphytica 135:55-62. https://doi.org/10.1023/B:EUPH.0000009540.98531.4d
  11. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:1151-1154.
  12. Bradley, D. J., Kjellbom, P. and Lamb, C. J. 1992. Elicitor- and wound-induced oxidative crosslinking of a proline-rich plant cell wall protein; a novel, rapid defence response. Cell 70:21-30. https://doi.org/10.1016/0092-8674(92)90530-P
  13. Cakmak, I. and Marschner, H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol. 98:1222-1227. https://doi.org/10.1104/pp.98.4.1222
  14. Chavan, V., Bhargava, S. and Kamble, A. 2013. Temporal modulation of oxidant and antioxidative responses in Brassica carinata during ${\beta}$-aminobutyric acid-induced resistance against Alternaria brassicae. Physiol. Mol. Plant Pathol. 83:35-39. https://doi.org/10.1016/j.pmpp.2013.03.002
  15. Cheng, Y., Zhang, H., Yao, J., Wang, X., Xu, J., Han, Q., Wei, G., Huang, L. and Kang, Z. 2012. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. BMC Plant Biol. 12:96. https://doi.org/10.1186/1471-2229-12-96
  16. Cota, I. E., Troncoso-Rojas, R., Sotelo-Mundo, R., Sanchez-Estrada, A. and Tiznado-Hernandez, M. E. 2007. Chitinase and ${\beta}$-1,3-glucanase enzymatic activities in response to infection by Alternaria alternata evaluated in two stages of development in different tomato fruit varieties. Sci. Hortic. 112:42-50. https://doi.org/10.1016/j.scienta.2006.12.005
  17. Dangl, J. and Jones, J. D. G. 2001. Plant pathogens and integrated defense responses to pathogens. Nature 411:826-834. https://doi.org/10.1038/35081161
  18. Debona, D., Rodrigues, F. a., Rios, J. A. and Nascimento, K. J. T. 2012. Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 102:1121-1129. https://doi.org/10.1094/PHYTO-06-12-0125-R
  19. Ebel, J. and Cosio, E. G. 1994. Elicitors of plant defense responses. Int. Rev. Cytol. 148:1-36. https://doi.org/10.1016/S0074-7696(08)62404-3
  20. Ebrahim, S., Ushaa, K. and Singh, B. 2011. Pathogenesis-related (PR) proteins: Chitinase and ${\beta}$-1,3-glucanase in defense mechanism against malformation in mango (Mangifera indica L.). Sci. Hortic.130:847-852. https://doi.org/10.1016/j.scienta.2011.09.014
  21. Ehsani-Moghaddam, B., Charles, M. T., Carisse, O. and Khanizadeh, S. 2006. Superoxide dismutase responses of strawberry cultivars to infection by Mycosphaerella fragariae. J. Plant Physiol. 163:147-153. https://doi.org/10.1016/j.jplph.2005.04.025
  22. Garcia-Limones, C., Hervas, A., Navas-Cortes, J. A., Jimenez-Diaz, R. M. and Tena, M. M. 2002. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol. Mol. Plant Pathol. 61:325-337. https://doi.org/10.1006/pmpp.2003.0445
  23. Ge, Y., Guest, D. I. and Bi, Y. 2014. Differences in the Induction of defence responses in resistant and susceptible muskmelon plants infected with Colletotrichum lagenarium. J. Phytopathol. 162:48-54. https://doi.org/10.1111/jph.12158
  24. Gill, S. S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  25. Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research, 2nd edn. New York: John Wiley, 680pp.
  26. Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757. https://doi.org/10.1016/S0960-9822(00)00560-1
  27. Hanounik, S. B. and Maliha, N. 1986. Horizontal and vertical resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis. 70:770-773. https://doi.org/10.1094/PD-70-770
  28. Hanounik, S. B. and Robertson, L. D. 1988. New sources of resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis. 72:696-698. https://doi.org/10.1094/PD-72-0696
  29. Heath, R. L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  30. Hong, J. K., Lee, S. C. and Hwang, B. K. 2005. Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses. Gene 356:169-180. https://doi.org/10.1016/j.gene.2005.04.030
  31. ICARDA, 1986. Screening Techniques for Disease Resistance in Faba bean. International Center for Agricultural Research in the Dry Areas, Aleppo, Syria, 59pp.
  32. Khalil, S. A. and Harrison, J. G. 1981. Methods of evaluating faba bean materials for chocolate spot. FABIS Newsletter 3: 51-52.
  33. Khalil, S. A., El-Hady, M. M., Dissouky, R. F., Amer, M. I. and Omar, S. A. 1993. Breeding for high yielding ability with improved level of resistance to chocolate spot (Botrytis fabae) disease in faba bean (Vicia faba). J. Agric. Sci. Mansoura Univ. 18:1315-1328.
  34. Laloi, C., Apel, K. and Danon, A. 2004. Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol. 7:323-328. https://doi.org/10.1016/j.pbi.2004.03.005
  35. Lamb, C. and Dixon, R. A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275. https://doi.org/10.1146/annurev.arplant.48.1.251
  36. Leach, R. and Moore, K. G. 1966. Sporulation of Botrytis fabae on agar culture. T. Brit. Mycol. Soc. 49:593-601. https://doi.org/10.1016/S0007-1536(66)80008-6
  37. Malolepsza, U. and Urbanek, H. 2000. The oxidants and antioxidant enzymes in tomato leaves treated with o-hydroxyethylorutin and infected with Botrytis cinerea. Eur. J. Plant Pathol. 106:657-665. https://doi.org/10.1023/A:1008719820600
  38. Mandal, S., Das, R. K. and Mishra, S. 2011. Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol. Biochem. 49:117-123. https://doi.org/10.1016/j.plaphy.2010.10.006
  39. Mandal, S., Mitra, A. and Mallick, N. 2008. Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol. Mol. Plant Pathol. 72:56-61. https://doi.org/10.1016/j.pmpp.2008.04.002
  40. Mauch, F., Mauch-Mani, B. and Boller, T. 1988. Antifungal hydrolases in pea tissues. II. Inhibition of fungal growth by combinations of chitinase and b-1,3-glucanase. Plant Physiol. 88:936-942. https://doi.org/10.1104/pp.88.3.936
  41. Mayer, A. M., Staples, R. C. and Gil-ad, N. L. 2001. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58:33-41. https://doi.org/10.1016/S0031-9422(01)00187-X
  42. Mellersh, D. G., Foulds, I.V ., Higgins, V. J. and Heath, M. C. 2002. $H_2O_2$ plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J. 29: 257-268. https://doi.org/10.1046/j.0960-7412.2001.01215.x
  43. Mitsuhara, I., Iwai, T. Seo, S., Yanagawa, Y., Kawahigasi, H., Hirose, S., Ohkawa, Y. and Ohashi, Y. 2008. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol. Genet. Genomics 279:415-427. https://doi.org/10.1007/s00438-008-0322-9
  44. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  45. Nakano, Y. and Asada, K. 2001. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.
  46. Nikraftar, F., Taheri, P., Rastegar, M. F. and Tarighi, S. 2013. Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiol. Mol. Plant Pathol. 81: 74-83. https://doi.org/10.1016/j.pmpp.2012.11.004
  47. Park, C. J., An, J. M., Shin, Y. C., Kim, K. J., Lee, B. J. and Peak, K. H. 2004. Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during resistance response to viral and bacterial infection. Planta 219:797-806.
  48. Patykowski, J. and Urbanek, H., 2003. Activity of enzymes related to $H_2O_2$ generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J. Phytopathol. 151:153-161. https://doi.org/10.1046/j.1439-0434.2003.00697.x
  49. Peng, M. and Kuc, J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf discs. Phytopathology 82:696-699. https://doi.org/10.1094/Phyto-82-696
  50. Rauscher, M., Adam, A. L., Wirtz, S., Guggenheim, R., Mendgen, K. and Deising, H. B. 1999. PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant J. 19:625-633. https://doi.org/10.1046/j.1365-313x.1999.00545.x
  51. Rhaiem, A., Cherif, M., Kharrat, M., Cherif, M. and Harrabi, M. 2002. New faba bean genotypes resistant to chocolate spot caused by Botrytis fabae. Phytopathol. Mediterr. 41:99-108.
  52. Sarowar, S., Kim, Y. J., Kim, E. N., Kim, K. D. and Hwang, B. K. 2005. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 24:216-224. https://doi.org/10.1007/s00299-005-0928-x
  53. SAS Institute Inc., 2003. SAS/STATA Guide for Personal Computers Version 9.1 edition. SAS Institute, Carry NC, USA.
  54. Segarra, G., Elena, G. and Trillas, I. 2013. Systemic resistance against Botrytis cinerea in Arabidopsis triggered by an olive marc compost substrate requires functional SA signaling. Physiol. Mol. Plant Pathol. 82:46-50. https://doi.org/10.1016/j.pmpp.2013.02.002
  55. Shaner, G. and Finney, R. E. 1977. The effect of nitrogen fertilization on the expression of slow mildewing resistance in knox wheat. Phytopathology 67:1051-1056.
  56. Shi, H., Cui, R., Hu, B., Wang, X., Zhang, S., Liu, R. and Dong, H. 2011. Overexpression of transcription factor AtMYB44 facilitates Botrytis infectionin Arabidopsis. Physiol. Mol. Plant Pathol. 76:90-95. https://doi.org/10.1016/j.pmpp.2011.06.008
  57. Sillero, J. C., Villegas-Fernandez, A. M., Thomas, J., Rojas-Molina, M. M., Emeran, A. A., Fernandez-Aparicio, M. and Rubiales, D. 2010. Faba bean breeding for disease resistance. Field Crops Res. 115:297-307. https://doi.org/10.1016/j.fcr.2009.09.012
  58. Torres, A. M., Roman, B., Avila, C. M., Satovic, Z., Rubiales, D., Sillero, J. C., Cubero, J. I. and Moreno, M. T. 2004. Faba bean breeding for resistance against biotic stresses, towards application of marker technology. Euphytica 147:67-80.
  59. Unger, C., Kleta, S., Jandl, G. and von Tiedemann, A. 2005. Suppression of the defence related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. J. Phytopathol. 153:15-26. https://doi.org/10.1111/j.1439-0434.2004.00922.x
  60. van Loon, L. C. 1997. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103:753-765. https://doi.org/10.1023/A:1008638109140
  61. van Loon, L. C. and Van Strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 proteins. Physiol. Mol. Plant Pathol. 55: 85-97. https://doi.org/10.1006/pmpp.1999.0213
  62. van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  63. Velikova, V., Yordanov, I. and Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci. 151:59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  64. Villegas-Fernandez, A. M., Sillero, J. C., Emeran, A. A., Winkler, J., Raffiot, B., Tay, J., Flores, F. and Rubiales, D. 2010. Identification and multi-environment validation of resistance to Botrytis fabae in Vicia faba. Field Crops Res. 114:84-90.
  65. von Tiedemann, A. 1997. Evidence for a primary role of oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol. Mol. Plant Pathol. 50:151-166. https://doi.org/10.1006/pmpp.1996.0076

Cited by

  1. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice vol.15, pp.7, 2017, https://doi.org/10.1111/pbi.12681
  2. Aphid infestation in the phyllosphere affects primary metabolic profiles in the arbuscular mycorrhizal hyphosphere vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-32670-1
  3. Molecular and biochemical characterization of mungbean yellow mosaic India virus resistance in leguminous host Vigna mungo vol.27, pp.3, 2018, https://doi.org/10.1007/s13562-018-0441-2
  4. pp.14374781, 2019, https://doi.org/10.1111/efp.12486