DOI QR코드

DOI QR Code

Evidence for Genetic Similarity of Vegetative Compatibility Groupings in Sclerotinia homoeocarpa

  • Chang, Seog Won (Turfgrass Science Institute, Hanul Inc.) ;
  • Jo, Young-Ki (Department of Plant Pathology and Microbiology, Texas A&M University) ;
  • Chang, Taehyun (Department of Plant Resources and Environment, College of Ecology and Environmental Science, Kyungpook National University) ;
  • Jung, Geunhwa (Stockbridge School of Agriculture, University of Massachusetts)
  • Received : 2014.08.11
  • Accepted : 2014.09.30
  • Published : 2014.12.01

Abstract

Vegetative compatibility groups (VCGs) are determined for many fungi to test for the ability of fungal isolates to undergo heterokaryon formation. In several fungal plant pathogens, isolates belonging to a VCG have been shown to share significantly higher genetic similarity than those of different VCGs. In this study we sought to examine the relationship between VCG and genetic similarity of an important cool season turfgrass pathogen, Sclerotinia homoeocarpa. Twenty-two S. homoeocarpa isolates from the Midwest and Eastern US, which were previously characterized in several studies, were all evaluated for VCG using an improved nit mutant assay. These isolates were also genotyped using 19 microsatellites developed from partial genome sequence of S. homoeocarpa. Additionally, partial sequences of mitochondrial genes cytochrome oxidase II and mitochondrial small subunit (mtSSU) rRNA, and the atp6-rns intergenic spacer, were generated for isolates from each nit mutant VCG to determine if mitochondrial haplotypes differed among VCGs. Of the 22 isolates screened, 15 were amenable to the nit mutant VCG assay and were grouped into six VCGs. The 19 microsatellites gave 57 alleles for this set. Unweighted pair group methods with arithmetic mean (UPGMA) tree of binary microsatellite data were used to produce a dendrogram of the isolate genotypes based on microsatellite alleles, which showed high genetic similarity of nit mutant VCGs. Analysis of molecular variance of microsatellite data demonstrates that the current nit mutant VCGs explain the microsatellite genotypic variation among isolates better than the previous nit mutant VCGs or the conventionally determined VCGs. Mitochondrial sequences were identical among all isolates, suggesting that this marker type may not be informative for US populations of S. homoeocarpa.

Keywords

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Baldwin, N. A. and Newell, A. J. 1992. Field production of fertile apothecia by Sclerotinia homoeocarpa in Festuca turf. J. Sports Turf Res. Inst. 68:73-76.
  3. Bennett, F. T. 1937. Dollar spot disease on turf and its causal organism Sclerotinia homoeocarpa n. sp. Ann. Appl. Biol. 24:236-257. https://doi.org/10.1111/j.1744-7348.1937.tb05032.x
  4. Berbegal, M., Ortega, A., Jimenez-Gasco, M. M., Olivares-Garcia, C., Jimenez-Diaz, R. M. and Armengol, J. 2010. Genetic diversity and host range of Verticillium dahliae isolates from artichoke and other vegetable crops in Spain. Phytopathology 94:396-404.
  5. Brooker, N. L., Leslie, J. F. and Dickman, M. B. 1991. Nitrate nonutilizing mutants of Colletotrichum and their use in studies of vegetative compatibility and genetic relatedness. Phytopathology 81:672-677. https://doi.org/10.1094/Phyto-81-672
  6. Burpee, L. L. 1997. Control of dollar spot of creeping bentgrass caused by an isolate of Sclerotinia homoeocarpa resistant to benzimidazole and demethylation-inhibitor fungicides. Plant Dis. 81:1259-1263. https://doi.org/10.1094/PDIS.1997.81.11.1259
  7. Cai, G. and Schneider, R. W. 2008. Population structure of Cercospora kikuchii, the causal agent of Cercospora leaf blight and purple seed stain in soybean. Phytopathology 98:823-829. https://doi.org/10.1094/PHYTO-98-7-0823
  8. Cecilia De Lima Favaro, L., Luiz Araujo, W., Aparecida De Souza-Paccola, E., Lucio Azevedo, J. and Paccola-Meirelles, L. D. 2007. Colletotrichum sublineolum genetic instability assessed by mutants resistant to chlorate. Mycol. Res. 111:93-105. https://doi.org/10.1016/j.mycres.2006.08.008
  9. Chakraborty, N., Chang, T., Casler, M. D. and Jung, G. 2006. Response of bentgrass cultivars to Sclerotinia homoeocarpa isolates representing 10 vegetative compatibility groups. Crop Sci. 46:1237-1244. https://doi.org/10.2135/cropsci2005.04-0031
  10. Chang, S. W., Chang, T. H., Hong, J. K., Park, J. H. and Jung, S. W. 2011. Vegetative compatibility grouping of Sclerotinia homoeocarpa isolates infecting turfgrass in South Korea. Asian J. Turfgrass Sci. 25:171-176.
  11. Chang, S. W., Jung, S. W., Kim, S., Park, J. H. and Lee, J. Y. 2012. Synergistic interaction of fungicides in mixtures under different conditions of dollar spot disease caused by Sclerotinia homoeocarpa. Asian J. Turfgrass Sci. 26:96-101. (in Korean).
  12. Chang, S. W., Jung, S. W., Kim, S., Park, J. H. and Lee, J. Y. 2013. Control effect on dollar spot disease caused by Sclerotinia homoeocarpa under different application rates and intervals with two mixed fungicides. Weed & Turf. Sci. 2:408-412. (in Korean). https://doi.org/10.5660/WTS.2013.2.4.408
  13. Correll, J. C., Klittich, C. J. R. and Leslie, F. F. 1987. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77:1640-1646. https://doi.org/10.1094/Phyto-77-1640
  14. Correll, J. C., Gordon, T. R. and McCain, A. H. 1988. Vegetative compatibility and pathogenicity of Verticillium albo-atrum. Phytopathology 78:1017-1021. https://doi.org/10.1094/Phyto-78-1017
  15. Cove, D. J. 1976. Chlorate toxicity in Aspergillus nidulansselection and characterization of chlorate resistant mutants. Heredity 36:191-203. https://doi.org/10.1038/hdy.1976.24
  16. Cox, K. D., Bryson, P. K. and Schnabel, G. 2007. Instability of propiconazole resistance and fitness in Monilinia fructicola. Phytopathology 97:448-453. https://doi.org/10.1094/PHYTO-97-4-0448
  17. DeVries, R. E., Trigiano, R. N., Windham, M. T., Windham, A. S., Sorochan, J. C., Rinehart, T. A. and Vargas, J. M. 2008. Genetic analysis of fungicide-resistant Sclerotinia homoeocarpa isolates from Tennessee and Northern Mississippi. Plant Dis. 92:83-90. https://doi.org/10.1094/PDIS-92-1-0083
  18. Felsentein, N. J. 1989. PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164-166.
  19. Ghikas, D. V., Kouvelis, V. N. and Typas, M. A. 2010. Phylogenetic and biogeographic Implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol. 10:1-15. https://doi.org/10.1186/1471-2180-10-1
  20. Grubisha, L. C. and Cotty, P. J. 2009. Twenty-four microsatellite markers for the aflatoxin-producing fungus Aspergillus flavus. Mol. Ecol. Res. 9:264-267. https://doi.org/10.1111/j.1755-0998.2008.02378.x
  21. Glass, N. L., Jacobson, D. J. and Shiu, P. K. T. 2000. The genetics of hyphal fusion and vegetative incompatibility in filamentous Ascomycete fungi. Annu. Rev. Genet. 34:165-186. https://doi.org/10.1146/annurev.genet.34.1.165
  22. Glass, N. L., Rasmussen, C., Roca, M. G. and Read, N. D. 2004. Hyphal homing, fusion and mycelial interconnectedness. TRENDS in Microbiol. 12:135-141. https://doi.org/10.1016/j.tim.2004.01.007
  23. Jackson, N. 1973. Apothecial production in Sclerotinia homoeocarpa F. T. Bennett. J. Sports Turf Res. Inst. 49:58-63.
  24. Joaquim, T. R. and Rowe, R. C. 1991. Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants. Phytopathology 81:552-558. https://doi.org/10.1094/Phyto-81-552
  25. Jo, Y. K., Chang, S. W., Rees, J. and Jung, G. 2008. Reassessment of vegetative compatibility of Sclerotinia homoeocarpa using nitrate-nonutilizing mutants. Phytopathology 98:108-114. https://doi.org/10.1094/PHYTO-98-1-0108
  26. Katan, T. and Katan, J. 1988. Vegetative compatibility grouping of Fusarium oxysporum f. sp. vasinfectum from tissue and rhizosphere of cotton plants. Phytopathology 78:852-855. https://doi.org/10.1094/Phyto-78-852
  27. Klittich, C. J. R. and Leslie, J. F. 1988. Nitrate reduction mutants of Fusarium moniliforme (Gibberella fujikuroi). Genetics 118:417-423.
  28. Korolev, N. and Katan, T. 1997. Improved medium for selecting nitrate non-utilizing (nit) mutants of Verticillium dahlia. Phytopathology 87:1067-1070. https://doi.org/10.1094/PHYTO.1997.87.10.1067
  29. Lamour, K. H., Finley, L., Hurtado-Gonzalez, O., Gobena, D., Tierney, M. and Meijer, H. J. G. 2006. Targeted gene mutation in Phytophthora sp. Mol. Plant Microbe In. 19:1359-1367. https://doi.org/10.1094/MPMI-19-1359
  30. Leslie, F. J. 1993. Fungal vegetative compatibility. Annu. Rev. Phytopathol. 31:127-150. https://doi.org/10.1146/annurev.py.31.090193.001015
  31. Ma, Z., Luo, Y. and Michailides, T. J. 2004. Spatiotemporal changes in the population structure of Botryosphaeria dothidea from California pistachio orchards. Phytopathology 94:326-332. https://doi.org/10.1094/PHYTO.2004.94.4.326
  32. Marlatt, M. L., Correll, J. C., Kaufmann, P. and Cooper, P. E. 1996. Two genetically distinct populations of Fusarium oxysporum f. sp. lycopersici race 3 in the United States. Plant Dis. 80:1336-1342. https://doi.org/10.1094/PD-80-1336
  33. Marzluf, G. A. 1981. Regulation of nitrogen metabolism and gene expression in fungi. Microbiol. Rev. 45:437-461.
  34. Mitkowski, N. A. and Colucci, S. 2006. The identification of a limited number of vegetative compatibility groups within isolates of Sclerotinia homoeocarpa infecting Poa spp. and Agrostis palustris from temperate climates. J. Phytopathology 154:500-503. https://doi.org/10.1111/j.1439-0434.2006.01108.x
  35. Nitzan, N., Hazanovsky, M., Tal, M. and Tsror (Lahkim), L. 2002. Vegetative compatibility groups in Colletotrichum coccodes, the causal agent of black dot on potato. Phytopathology 92:827-832. https://doi.org/10.1094/PHYTO.2002.92.8.827
  36. Peakall, R. and Smouse, P. E. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mole. Ecol. Notes 6:288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  37. Powell, J. F. and Vargas, J. M. 2001. Vegetative compatibility and seasonal variation among isolates of Sclerotinia homoeocarpa. Plant Dis. 85:377-381. https://doi.org/10.1094/PDIS.2001.85.4.377
  38. Rozen, S. and Skaletsky, H. 2000. Primer 3 on the WWW for general users and biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology (eds Krawetz S, Misener S), pp. 365-386. Humana Press, Totowa, New Jersey.
  39. Saitoh, K., Togashi, K., Arie, T. and Teraoka, T. 2006. A simple method for a mini-preparation of fungal DNA. J. Gen. Plant. Pathol. 72: 348-350. https://doi.org/10.1007/s10327-006-0300-1
  40. Skovgaard, K., Nirenberg, H. I., O'Donnell, K. and Rosendahl, S. 2001. Evolution of Fusarium oxysporum f. sp. vasinfectum races Inferred from multigene genealogies. Phytopathology 91:1231-1237. https://doi.org/10.1094/PHYTO.2001.91.12.1231
  41. Smiley, R. W. Dernoeden, P. H. and Clarke B. B. 2005. Compendium of turfgrass diseases. American Phytopathological Society, St. Paul, MN.
  42. Smith, J. D., Jackson, N. and Woolhouse, A. R. 1989. Fungal diseases of amenity turfgrasses. 3rd. Ed. E. and F. Spon, London.
  43. Subbarao, K. V., Chassot, A., Gordon, T. R., Hubbard, J. C., Bonello, P., Mullin, R., Okamoto, D., Davis, R. M. and Koike, S. T. 1995. Genetic relationships and cross pathogenicities of Verticillium dahliae isolates from cauliflower and other crops. Phytopathology 85:1105-1112. https://doi.org/10.1094/Phyto-85-1105
  44. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  45. Tomsett, A. B. and Garrett, R. H. 1980. The isolation and characterization of mutants defective in nitrate assimilation in Neurospora crassa. Genetics 95:649-660.
  46. Viji, G., Uddin, W., O'Neill, N. R., Mischke, S. and Saunders, J. A. 2004. Genetic diversity of Sclerotinia homoeocarpa isolates from turfgrasses from various regions in North America. Plant Dis. 88:1269-1276. https://doi.org/10.1094/PDIS.2004.88.11.1269
  47. Warnke, S. 2003. Creeping bentgrass (Agrostis stolonifera L.). Pages 175-185 in: Turfgrass Biology, Genetics, and Breeding. M. D. Casler and R. R. Duncan, eds. John Wiley & Sons, Hoboken, NJ.

Cited by

  1. Vegetative incompatibility in fungi: From recognition to cell death, whatever does the trick vol.30, pp.4, 2016, https://doi.org/10.1016/j.fbr.2016.08.002
  2. Something in the agar does not compute: on the discriminatory power of mycelial compatibility in Sclerotinia sclerotiorum pp.1983-2052, 2018, https://doi.org/10.1007/s40858-018-0263-8