DOI QR코드

DOI QR Code

Fast Congestion Control to Transmit Bursty Traffic Rapidly in Satellite Random Access Channel

위성 랜덤 액세스 채널에서 Bursty 트래픽의 신속한 전송을 위한 빠른 혼잡 제어 기법

  • Received : 2014.08.31
  • Accepted : 2014.10.08
  • Published : 2014.11.28

Abstract

In this paper, we propose a traffic load control scheme, called fast congestion control (FCC), for a satellite channel using enhanced random access schemes. The packet repetition used by enhanced random access schemes increases not only the maximum throughput but also the sensitivity to traffic load. FCC controls traffic load by using an access probability, and estimates backlogged traffic load. If the backlogged traffic load exceeds the traffic load corresponding to the maximum throughput, FCC recognizes congestion state, and processes the backlogged traffic first. The new traffic created during the congestion state accesses the channel after the end of congestion state. During the congestion state, FCC guarantees fast transmission of the backlogged traffic. Therefore, FCC is very suitable for the military traffic which has to be transmit urgently. We simulate FCC and other traffic load control schemes, and validate the superiority of FCC in latency.

본 논문은 복제 패킷을 사용하는 위성 랜덤 액세스 채널에서 bursty 트래픽을 안정적으로 전송하기 위한 트래픽 부하 제어 기법으로 FCC (Fast Congestion Control)을 제안한다. 위성 랜덤 액세스 채널에서 순간적으로 발생하는 bursty 트래픽은 그 양이 많을 경우 충돌 확률로 인하여 backlogged 트래픽이 다수 발생할 수 있다. FCC는 access probability를 통해 트래픽 부하를 제어하며, backlogged 트래픽의 양을 추정한다. 또한 backlogged 트래픽이 최대 처리량에 해당하는 트래픽 부하를 넘어설 경우 빠르게 congestion 상태로 전환한다. Congestion 상태에서는 backlogged 트래픽이 우선적으로 처리되며, 새로 유입되는 트래픽은 congestion 상태가 지속되는 동안 채널에 접속하지 않고 대기하다가 congestion 상태가 종료되는 시점에 채널에 유입된다. Congestion 상태에서 backlogged 트래픽은 신속한 전송을 보장받기 때문에 지연 시간이 단축된다. 따라서 FCC는 긴급성이 요구되는 군 트래픽에 매우 적합한 기술이다. 본 논문은 모의실험을 통해 기존 기법 대비 제안 기법의 우수성을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. Noh, K. Go, K. Lee, J. Kim, J. Lim, and Y. Song, "Resource allocation and IP networking for next generation military satellite communications system," Inf. Commun. Mag., vol. 38C, no. 11, pp. 939-954, Nov. 2013.
  2. W. Soon, H. W. Park, H. S. Lee, Y. S. Yoo, and B. G. Jung, "A power control-based MF-TDMA resource allocation scheme for next generation military satellite," The J. Korea Inform. Commun. Society, vol. 37c, no. 11, pp.1138-1149, Dec. 2012. https://doi.org/10.7840/kics.2012.37C.11.1138
  3. H. W. Park, H. S. Lee, and W. S. Yoon, "Performance analysis of cooperative communication with spread spectrum to overcome channel blockage for on-the-move terminal in next generation satellite communication systems," The J. Korea Inform. Commun. Society, vol. 39c, no. 09, pp.757-766, Sep. 2014. https://doi.org/10.7840/kics.2014.39C.9.757
  4. R. D. Gaudenzi and O. D. R. Herrero, "Advances in random access protocols for satellite networks," Int. Worskshop on Satellite and Space Commun. (IWSSC), pp. 331-336. 2009.
  5. N. Kuhn, H-C. Bui, J. Lacan, J. Radzik, and E. Lochin, "On the trade-off between spectrum efficiency with dedicated access and short end-to-end transmission delays with random access in DVB-RCS2," in Proc. ACM MobiCom Workshop on Lowest Cost Denominator Networking for Universal Access (LCDNet 2013), 2013.
  6. E. Casini, R. De Gaudenzi, and O. del R. Herrero, "Contention resolution diversity slotted ALOHA (CRDSA): an enhanced random access scheme for satellite access packet networks," IEEE Trans. Wirel. Commun., vol. 6, no. 4, Apr. 2007.
  7. G. Liva, "Graph-based analysis and optimization of contention resolution diversity slotted ALOHA," IEEE Trans. Commun., vol. 59, no. 2, Feb. 2011.
  8. Digital Video Broadcasting (DVB); Second Generation DVB Interactive Satellite System (DVB-RCS2); Part 2: Lower Layers Satellite Specification, ETSI EN 301 545-2, Jan. 2012.
  9. D. G. Jeong and W. S. Jeon, "Performance of an exponential backoff scheme for slotted-ALOHA protocol in local wireless environment," IEEE Trans. Veh. Technol., vol. 44, no. 3, 1995.
  10. J. Myung, W. Lee, and J. Srivastava, "Adaptive binary splitting for efficient RFID tag anti-collision," IEEE Commun. Lett., vol. 10, no. 3, 2006.
  11. Z. Naor and H. Levy, "A centralized dynamic access probability protocol for next generation wireless network," IEEE Int. Conf. Comput. Commun. (INFOCOM), vol. 2, pp. 767-775, Anchorage, AK, Apr. 2001.
  12. Z. Naor, "An efficient short messages transmission in cellular networks," IEEE Int. Conf. Comput. Commun. (INFOCOM), vol. 1, Mar. 2004.
  13. Z. Naor, "LAMA/CA: A load-adaptive MAC protocol for short packets," ACM Mobile Netw. Appl., vol. 15, no. 5, 2010.
  14. J. Wiss and R. Gupta, "The WIN-T MF-TDMA network centric waveform," in Proc. IEEE Military Commun. Conf., pp. 1-7, Orlando, FL, Oct. 2007.
  15. A. Zanella, "Estimating collision set size in framed slotted ALOHA wireless networks and RFID systems," IEEE Commun. Lett., vol. 16, no. 3, pp. 300-303, 2012. https://doi.org/10.1109/LCOMM.2012.011312.112067
  16. H. Wu, C. Zhu, R. J. La, X. Liu, and Y. Zhang, "FASA: Accelerated S-ALOHA using access history for event-driven M2M communications," IEEE/ACM Trans. Netw., vol. 21, no. 6, Dec. 2013.