DOI QR코드

DOI QR Code

A Carbazole Based Bimodal "Turn-On" Fluorescent Probe for Biothiols (Cysteine/Homocysteine) and Fluoride: Sensing, Imaging and its Applications

  • Kaur, Matinder (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Yoon, Byungkwon (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Kumar, Rajesh (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Cho, Min Ju (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Kim, Hak Joong (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Kim, Jong Seung (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Choi, Dong Hoon (Department of Chemistry, Research Institute for Natural Sciences, Korea University)
  • Received : 2014.06.17
  • Accepted : 2014.08.06
  • Published : 2014.12.20

Abstract

A well-known carbazole-based precursor (probe 1) was used for the detection of cysteine/homocysteine and fluoride. Probe 1 shows a "turn-on" response to cysteine/homocysteine and fluoride via enhancement in emission intensity at 442 nm and 462 nm respectively, in solutions and living cells. Furthermore, probe 1 behaves as a fluorescent molecular switch between cysteine/homocysteine and fluoride as the chemical inputs, which have been used for the development of a combinatorial logic circuit and a molecular keypad lock.

Keywords

References

  1. Berndt, C.; Lillig, C. H.; Holmgren, A. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1227.
  2. Brosnan, J. T.; Brosnan, M. E. J. Nutr. 2006, 136, 1636S.
  3. Moriarty-Craige, S. E.; Jones, D. P. Ann. Rev. Nutr. 2004, 24, 481. https://doi.org/10.1146/annurev.nutr.24.012003.132208
  4. Prakash, M.; Shetty, M. S.; Tilak, P.; Anwar, N. OJHAS 2009, 8, 2.
  5. Masella, R.; Mazza, G. Glutathione and Sulfur Amino Acids in Human Health and Disease; 2008, ISBN: 9780470170854.
  6. Zhang, S.; Ong, C. N.; Shen, H. M. Cancer Lett. 2004, 208, 143. https://doi.org/10.1016/j.canlet.2003.11.028
  7. Kovar, J.; Stybrova, H.; Truksa, J.; Spevakova, K.; Valenta, T. Folia Biol. 2002, 48, 58.
  8. Ueno, T.; Nagano, T. Nat. Methods 2011, 8, 642. https://doi.org/10.1038/nmeth.1663
  9. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. Chem. Rev. 2010, 110, 2620. https://doi.org/10.1021/cr900263j
  10. Rao, J.; Dragulescu-Andrasi, A.; Yao, H. Curr. Opin. Chem. Biol. 2007, 18, 17.
  11. Shi, J.; Wang, Y.; Tang, X.; Liu, W.; Jiang, H.; Dou, W.; Liu, W. Dyes Pigm. 2014, 100, 255. https://doi.org/10.1016/j.dyepig.2013.09.021
  12. Yuan, Y.; Kwok, R. T. K.; Feng, G.; Liang, J.; Geng, J.; Tang, B. Z.; Liu, B. Chem. Commun. 2014, 295.
  13. Liu, Y.; Zhang, S.; Lv, X.; Sun, Y.-Q.; Liu, J.; Guo, W. Analyst 2014, 139, 4081. https://doi.org/10.1039/C4AN00639A
  14. Song, Q.-H.; Wu, Q. Q.; Liu, C.-H.; Du, X.-J.; Guo, Q.-X. J. Mater. Chem. B 2013, 1, 438. https://doi.org/10.1039/c2tb00402j
  15. Isik, M.; Ozdemir, T.; Turan, I. S.; Kolemen, S.; Akkaya, E. U. Org. Lett. 2013, 15, 216. https://doi.org/10.1021/ol303306s
  16. Ashokkumar, P.; Weißhoff, H.; Kraus, W.; Rurack, K. Angew. Chem. Int. Ed. 2014, 53, 2225. https://doi.org/10.1002/anie.201307848
  17. Kaur, M.; Cho, M. J.; Choi, D. H. Dyes Pigm. 2014, 103, 154. https://doi.org/10.1016/j.dyepig.2013.12.006
  18. Roy, A.; Datar, A.; Kand, D.; Saha, T.; Talukdar, P. Org. Biomol. Chem. 2014, 12, 2143. https://doi.org/10.1039/c3ob41886c
  19. Yuan, M. S.; Wang, Q.; Wang, W.; Wang, D. E.; Wang, J.; Wang, J. Analyst 2014, 139, 1541. https://doi.org/10.1039/c3an02179c
  20. Saravanan, C.; Easwaramoorthi, S.; Hsiow, C. Y.; Wang, K.; Hayashi, M.; Wang, L. Org. Lett. 2014, 16, 354. https://doi.org/10.1021/ol403082p
  21. Cametti, M.; Rissanen, K. Chem. Soc. Rev. 2013, 42, 2016. https://doi.org/10.1039/c2cs35439j
  22. Farley, J. R.; Wergeda, J. E.; Baylink, D. J. Science 1983, 222, 330. https://doi.org/10.1126/science.6623079
  23. Horowitz, H. S. J. Public Health Dent. 2003, 63, 3.
  24. Lennon, M. A. Bull. World Health Organ. 2006, 84, 759. https://doi.org/10.2471/BLT.05.028209
  25. Schubert, M. P. J. Biol. Chem. 1936, 114, 341.
  26. Schubert, M. P. J. Biol. Chem. 1937, 121, 539.
  27. Folmer-Andersen, J. F.; Buhler, E.; Candau, S. J.; Joulie, S.; Schmutz, M.; Lehn, J. M. Polym. Int. 2010, 59, 1477. https://doi.org/10.1002/pi.2864
  28. Goswami, S.; Manna, A.; Paul, S.; Das, A. K.; Nandi, P. K.; Maity, A. K.; Saha, P. Tetrahedron Lett. 2014, 55, 490. https://doi.org/10.1016/j.tetlet.2013.11.055
  29. Son, S.-H.; Kim, Y.; Heoc, M. B.; Lim, Y. T.; Lee, T. S. Tetrahedron 2014, 70, 2034. https://doi.org/10.1016/j.tet.2014.01.060
  30. Kong, F.; Liu, R.; Chu, R.; Wang, X.; Xu, K.; Tang, B. Chem. Commun. 2013, 9176.
  31. Das, P.; Mandal, A. K.; Chandar, N. B.; Baidya, M.; Bhatt, H. B.; Ganguly, B.; Ghosh, S. K.; Das, A. Chem. Eur. J. 2012, 18, 15382. https://doi.org/10.1002/chem.201201621
  32. Yang, Z.; Zhao, N.; Sun, Y.; Miao, F.; Liu, Y.; Liu, X.; Zhang, Y.; Ai, W.; Song, G.; Shen, X.; Yu, X.; Sun, J.; Wong, W. Y. Chem. Commun. 2012, 3442.
  33. Hildebrand, J. H.; Benesi, H. A. J. Am. Chem. Soc. 1949 71, 2703.
  34. Bhalla, V.; Roopa, Kumar, M. Org. Lett. 2012, 14, 2802. https://doi.org/10.1021/ol301030z
  35. Szacilowski, K. Chem. Rev. 2008, 108, 3481. https://doi.org/10.1021/cr068403q
  36. Molecular Devices and Machines. A Journey into the Nano World; Balzini, V., Venturi, M., Credi, A., Eds.; Wiley-VCH: Wienheim, 2003.
  37. Mitchell, R. J. Microprocessor Systems: An Introduction; Macmillan:London, 1995.