스마트카 적용 첨단 IT기술 및 산업표준 동향
Trends of State-of-the-art IT Technologies and Industrial Standardization Applied to Smart Car

한태민 (T.M. Han) 자동차IT 분야표준연구실 책임연구원
박미동 (M.R. Park) 자동차IT 분야표준연구실 책임연구원
조진희 (J.H. Choi) 품질보증연구실 책임연구원
이정환 (J.H. Lee) 개인통신연구실 산업연구원
성기순 (K.S. Sung) 개인통신연구실 산업연구원

기존 자동차산업은 안전성과 편리성을 추구하는 소비자의 욕구에 부응하여 기계 정치에서 전자장치로 변화하고 있다. 최근 IT기술과 산업 간 융합이 활발한 가운데 자동차 IT부문에도 각종 첨단 IT기술이 접목되면서 운전자의 안전 및 편의성을 증대시킬 수 있는 스마트카(Smart Car)로 진화하고 있다. 스마트카는 인포테인먼트와 태블릿스 폰만 아니라 전기전자동차의 적절한 자동차로 시고 예방을 위한 첨단센서와 컴퓨팅기술, 차량주행 관리기술 및 음성인식기술 등이 있다. 이에 본고에서는 스마트카에 적용되는 첨단 IT기술과 최근 스마트카에 적용되는 첨단 자동차-IT 융합기술 및 서비스가 자동차 전자장치용 소프트웨어 표준 플랫폼인 AUTOSAR(AUTomotive Open System Architecture)의 표준동향 및 이슈를 살펴보고자 한다.
I. 서론

최근 들어 자동차와 IT 간 융합이 가속화되면서 스마트카(Smart Car) 시대가 열리고 있다. 안전하고 편리한 서비스 제공을 위해 LTE(Long Term Evolution) 네트워크 기능이 탑재되고 앱 스토어라는 개방형 생태계가 자동차 회사별로 도입되고 있다. 스마트카는 차량 내 정보를 통합 관리하고, 운전자는 차 내에서 오락, 정보, 회의, 문서 작업 등 다양한 콘텐츠를 즐길 수 있는 미래 철단이다. 또한, 스마트폰 등 모바일 기기와 이동통신 기술을 자동차에 접목하여 자동차의 안전성과 편의성을 향상시키고 있다. 이러한 자동차와 IT기술을 융합 흐름에 따라 IT업체들은 단독으로 혹은 자동차업체와의 전략적 제휴를 통하여 새로운 생태계를 만들어가는 과정 중에 있다.

본고에서는 스마트카에 적용된 첨단 IT기술과 자동차 전장 소프트웨어 표준 플랫폼인 AUTOSAR(AUTOMotive Open System Architecture)에 대한 동향과 주요 이슈를 살펴보고자 한다.

II. 스마트카 적용 첨단 IT기술

CES(Consumer Electronics Show) 2014에서는 전 세계 3,200여 개 기업이 2만개가 넘는 IT 관련 신제품 및 신기술이 발표되었으며, 자동차의 경우 아우디, BMW, 포드, 기아자동차, 벤츠 등 9개 완성차와 택시, 보석, 방송 등 125개 업체들이 자동차 기술 및 서비스를 공개하였다. 자동차-IT기술 주요 트렌드는 연결성(Connectivity), 웨어러블 디바이스, 친환경차, 자율주행기술, 차량 전용 스마트폰 앱과 자체 앱 스토어의 분격화, 자동차용 운영체제 기술 등으로 요구할 수 있으며, 이는 자동차가 이미 전자제품의 범주에 들어오기 시작했음을 의미한다.

1. LTE

LTE는 3G 이동통신 표준에서 진화한 기술로 미래의 요구에 대응해 3GPP에서 규정 및 개발하고 있는 차세대 이동통신 기술이다. LTE와 IoT(Internet of Things) 간 시너지를 극대화할 수 있는 커넥티드카(Connected Car) 서비스는 자동차에 LTE 기반 브로드밴드 서비스를 도입해 2,068대를 선도하기 위한 'LTE 커넥티드 카'가 추진되고 있다. 텔레메틱스 서비스뿐 아니라 클라우드 기반 음악, 영화 콘텐츠 스토리밍, 개인 DVR 콘텐츠 엑세스 서비스 등을 제공한다.

GM 웨보레는 ‘On Star 4G LTE’ 인포테인먼트 시스템을 2014년 1월 CES에서 공개하였다(그림 1 참조). 차량 외부 통신망은 LTE로, 내부망은 와이파이를 활용해 발송자들이 모바일기기로 무선인터넷을 사용하고, 스마트폰을 통해 필요한 애플리케이션을 자동차에서 다운로드하여 사용할 수 있다. 아우디는 HMI(Human-Machine Intergration) 기술을 활용한 계기판 및 LTE 모듈이 탑재된 인포테인먼트 시스템인 ‘아우디 커넥트’를 공개하였다(그림 1 참조). 초고속 데이터통신을 기반으로 온라인 게임이나 비디오 스트리밍을 차량 내에서 자유롭게 즐길 수 있으며, 실시간 교통정보 제공 서비스를 통해 신호상황과 거리를 측정하고 적정 속도

(그림 1) GM 온스타와 아우디 인포테인먼트 시스템
2. 응성인식

응성인식은 사람이 발설한 응성의 의미 내용을 컴퓨터로 인식하여 자동적으로 응답하는 것으로, 미래 자동차에서는 응성인식을 통해 차량 안내소 있는 응답이 필요하며, 이에 따라 이차별과 응답 내용을 주고받는 차량의 응답을 응답할 수 있게 된다.

포드의 머스름과 함께 발발한 ‘수동(syno)’은 운전자가 응답으로 다양한 기기들을 제어할 수 있는 시스템으로 2013년 초 스티그가 사용된 응성인식 '%명령' 등 사용자 기능을 업데이트하고 발표하였다. 스티그는 라디오에서부터 전화, 내비게이션, 실내온도 조절 등 약 1만개의 응답명령을 응답하여 차량 내에서 와이파이 연결을 통해 다양한 응용을 응답한다(그림 2 참조).

아우디는 2012년 CES에서 응답으로 인포테인먼트(정보+오락) 시스템을 발전하는'아우디 커넥트(Audi Connect)를 선보였는데 “에그파(‘I’m hungry’), “기름이 빼어졌어(‘I need gas’)” 등을 말하면 해당 장소를 꼭 알려주고 차량도 꼭 알아주라는 시스템이다(그림 2 참조).

국내에서는 현대차가 '블루링크 텔레메틱스 시스템'을 처음으로 공개하면서 대화형 응성인식 시스템을 선보였고, 2013년 하반기부터 장착되었다. 응답으로 목적지를 말하면 블루링크센터에서 목적지 위치를 내비게이션으로 전송해주는 기술이다. IOS7가 탑재된 아이폰 사용자는 Siri를 통해 오디오 등 차량기능을 작동시킬 수 있다.

3. V2X통신(Vehicle to X)

최근 자동차에 무선망기술이 갈망되어 차량 중심의 네트워크를 형성하고 차량 정보를 환경에 제공하여 운전자에게 안전성과 편리성 증대 및 차량의 부가가치를 높이고 교통의 효율성을 증대시키는 방향으로 발전하고 있다.

차량을 중심으로 한 무선통신 기술은 차량 내 디바이스 간 네트워크(INV: In-Vehicle Network), 차량 간 통신 네트워크(V2V: Vehicle to Vehicle ad-hoc network), 차량과 인프라 간 네트워크(V2I: Vehicle to Infrastructure network), 보행자와 차량간 네트워크(P2V: Pedestrian to Vehicle network)로 구분된다(표 1 참조). V2I 네트워크는 통신 인프라와 연결되는 형태로 IP 가변 패킷 통신망이며, V2V와 P2V는 갱체(서랍, 차량, 센서) 간 Ad-hoc 통신으로 인프라 없이 이용하는 환경에서 패킷 통신망을 구성하는 특성을 보유하고 있다.

<table>
<thead>
<tr>
<th>표 1</th>
<th>V2V/V2I 통신 응용서비스</th>
</tr>
</thead>
<tbody>
<tr>
<td>구분</td>
<td>기본 서비스</td>
</tr>
<tr>
<td>V2V 통신 응용서비스</td>
<td>긴급 브레이크 동 경고, 전방추돌 경고, 교차로 안전지원, 사각지역 및 차선변경 경고, 주행 경고, 제어조신 경고</td>
</tr>
<tr>
<td>V2I 통신 응용서비스</td>
<td>교차로 안전지원, 속도관리, 상호작용 안전 지원</td>
</tr>
</tbody>
</table>

한테만 외 / 스마트카 적용 첨단 IT기술 및 산업표준 동향 11
통신 인프라가 구축되지 않은 상태에서도 차량 간 통신에 의해 안전지원서비스를 제공할 목적으로 자동차업체들이 컨소시엄을 구성하고 있다. 차량과 인프라 간 서비스는 차량의 상태나 도로의 상태를 파악하여 차량에 정보를 제공하는 서비스로 2015년부터 통신 인프라를 구축한다는 목표로 자동차업체가 단말 장착을 주도적으로 하고, 통신 인프라의 구축은 주 정부가 추진한다. V2V 통신 인프라는 도심지와 고속도로 구간, 신호등과의 연계가 필요해 교통부(DoT: Department of Transportation) 산하기관을 통한 JPO(Joint Program Office)에서 테스트베드 사업을 추진한다. 유럽에서도 미국과 협력해 2011년부터 C2X(Car to X) 테스트베드 사업을 7개국에서 구축하고 추진하고 있다. 테스트베드 사업은 상용화를 위해 필요한 단계로 전 세계적으로 활용할 수 있는 서비스 발굴 및 서비스의 데이터 포맷과 통신 프로토콜을 표준화하여 단말기나 기지국 장치의 호환성을 제공한다. 또한, 테스트베드를 통해 교통사고를 줄이는 효과를 정량적으로 제시할 수 있는 시험데이터를 수집, 분석한다.

4. 웨어러블 기기(wearable)

스마트워치, 스마트글래스 등 웨어러블 기기의 소형화로 웨어러블 컴퓨터와 스마트가 결합된 서비스가 본격적으로 출시되고 있다.

벤츠는 차량의 주차 위치나 도어잠김 여부, 주유상태, 충전상태 등을 패들 스마트워치 또는 갤럭시 기어를 통해 서비스를 제공하고 있다(그림3 참조). BMW는 갤럭시 기어를 이용해 BMW 전기차 33 왼쪽사양, 목적지 정보 전송, 차량 내부 운도조절, 베타리 전량 확인, 충전 소요시간, 차면 개폐 상태 등의 서비스를 제공하고 있다(그림3 참조). 현대자동차는 구글 글래스 등과 같은 웨어러블 기기와 연동할 수 있는 텔레메틱 시스템 '블루링크'를 공개했으며, 구글 글래스를 착용하면 오른쪽 눈앞에 작은 화면이 뜨는데 이를 이용하여 주유소 검색, 왼쪽사양, 에어컨 제어 및 자동차 위치검색 등의 서비스를 제공하고 있다.

5. 차량용 앱 플랫폼

스마트카의 발전으로 운전자에 사용할 수 있는 애플리케이션의 중요성이 부각되자 자동차업체들은 독자적으로 자사의 앱 스토어를 구축하여 후발업체와 차별화를 시도하고 있다. 앱 스토어 구축에 있어 스마트폰용 앱 스토어 제공과 함께 헤드유닛용 앱 스토어도 준비하는 등 점점 다양해지면서 주유, 기기, 위치 등 차량정보 파악과 고객 접속 등의 서비스를 제공하고 있다.

GM은 HTML5를 활용한 차량 내 앱 서비스 플랫폼 및 개발도구를 공개했는데 자동차에 탑재할 수 있는 앱 시장을 개발자들에게 오픈하여 개발자로부터 많은 아이디어를 얻겠다는 구상이다. 포드는 '앱 링크 2.0' 시험을 공개했는데, 개발자들이 자동차 제어와 디스플레이, 음
성인식 등의 기능을 갖춘 앱을 개발할 수 있도록 소프트웨어를 제공하며 업무에 필요한 개발품에서의 차량 정보 업로드에 대한 부분이 포함되어 있다(그림 4 참조). 캐나다의 QNX는 차량용 앱 플랫폼 ‘캐인포테인먼트’와 HTML5 웹 표준을 활용해 앱을 만드는 개발도구를 출시하였다. QNX의 SDK는 HTML, CSS, 자바스크립트 같은 표준기술로 차량용 앱을 만들 수 있는 ‘블랙베리 웹워크’ 프레임워크를 확장시켰는데, IVI(In-Vehicle Infotainment)를 위한 화스크린, 멀티미디어, 앱 스토어, 라디오, 개인화, 간편한 인터페이스가 특징이다.

6. 자동차용 운영체제 경쟁(플랫폼)

스마트폰에서 예를로 ‘iOS’, 구글의 ‘안드로이드’처럼 자동차에서도 스마트카의 진전으로 자동차용 운영체제의 중요성이 부각되고 있다. 구글, 애플 등은 자동차 제조업체들과 협력을 통해 운영체제 개발에 박차를 가하고 있다.

구글은 2014년 1월 오토차연합(OAA: Open Automotive Alliance)의 출범을 발표하였으며 아우디, GM, 혼다, 현대자동차 등 4개사 외 그레익버드 전문업체인 엠비디아와 함께 안드로이드를 차량용 운영체제로 적용하는 것을 목표로 협력하고 있다. OAA는 안드로이드 시스템을 자동차에 접목시키는 운전자 보다 안전하고 편리하게 안드로이드 시스템을 사용할 수 있도록 준비하고 있다. 예플은 2013년 6월 아이폰과 자동차 계기판을 통합하기 위한 ‘iOS 인 더 카’ 전략을 공개하고, 2014년 하반기 상용화할 계획으로 벤츠 등 12개 업체와 협력하고 있다.

7. 클라우드

클라우드 컴퓨팅(Cloud Computing)은 인터넷상의 서로 다른 물리적 위치에 존재하는 컴퓨팅 자원을 가상화 기술로 통합하여 사용자에게 언제 어디서나 필요한 억만 클라우드를 편리하게 사용할 수 있는 환경을 제공하는 기술이다. 네트워크 상에 있는 애플리케이션이나 서버와 같은 리소스를 서비스로 제공하거나 이용하며, 자원은 스토리지, 컴퓨터, 네트워크 등이다.

포드는 2011년 9월 ‘IFA 2011’에서 자동차와 클라우드 컴퓨팅기술을 접목한 스마트카 ‘에보스’를 전시하였는데(그림 5 참조), 이 서비스는 운전자와 운전 가능 상태 검단 및 가상화 홈페이지에 자동 접속해 목적지까지 대기 오염도가 가장 낮은 경로를 제시하고, 외부 날씨에 따라 에어컨이나 히터로 차량 내의 온도 자동조절 등을 제공한다. 도요타는 2011년 4월 MS와 텔레메틱스기술에 기반을 둔 스마트카를 만드는 프로젝트에 1,200만 달러를 투자하기로 합의하였다. 도요타는 MS의 클라우드 플랫폼 ‘에제(Azure)’를 전기차에 도입해 세계 어디서나 디지털서비스를 가능하게 했다(그림 5 참조). 디지털서비스는 GPS, 멀티미디어 서비스뿐만 아니라 전기차, 하이브리드 자동차의 전력관리 솔루션 등이 있다. 이렇게 클라우드 네트워크를 이용해 어디서나 자동차에 안전하고 편리하게 접속할 수 있는데 MS의 예는 도요타에 텔레메틱 서비스를 제공하기 위해 장병 위반한 플랫폼을 제공한다.

8. 보안기술

보안기술(Vehicle Security System)은 차량도난 및 절도방지를 위한 Smart Key 및 Immobilizer 시스템과 더불어 최근 차량의 진화와 지능화가 급속히 진행되면 외부 위험들로부터 차량 전자시스템 보호 및 개인의 정보 보호를 위한 것이 주요 역할을 한다.

(그림 5) 포드 에보스와 MS의 클라우드 플랫폼 예제

한태만 외 / 스마트카 적용 점단 IT기술 및 산업표준 동향 13
프라이버시를 보호하기 위한 다양한 보호기술을 의미한다. 관련 기술분야로는 텔레메틱스 보안, 자동차 통신 보안, ID 보호 등의 프라이버시 보호기술, DRM(Digital Rights Management) 및 Trusted 컴퓨팅기술, EDR(_EVENT DATA RECORDER)을 위한 소프트웨어 배포 기술, 도난/절도방지 기술, 무선 채널 및 송수신 데이터에 대한 위변조/가로채기, 내부 유닛에 대한 공격(전자저항 장치 및 내부 제어 장치 등) 등 다양한 위협 모델에 대한 정의 기술, 차량 네트워크 통신 구조, 보안 메커니즘 기술(Key 및 ID 관리, 보안 통신 프로토콜, 위조방지 장치 및 암호기술), 차량 주변환경 인식(공간인지) 및 장애물 회피 기술, 센서 및 인프라기간 정보융합 기술, 조향/제동 등 차량제어 기술 등이 있다. 차량 내외부 정보의 단절없는 연결성 요구에 따른 차량 네트워크의 통합을 위한 게이트웨이의 필요성과 중요성 또한 강화되고 있다.

III. AUTOSAR 국제표준

AUTOSAR는 점점 복잡해지는 자동차 소프트웨어 기술발전에 대응하기 위해서 자동차제조사와 공급업체 간 진화 소프트웨어의 재사용(reuse) 및 환경성(exchangeability)을 개선하고 자동차 생산비용 절감 및 새로운 진수 가능 개발의 발판을 마련하고자 2003년 6월에 BMW, 포스마진, 코니어, 다이مير, 보쉬 등 세계적인 주요 자동차업체들의 공동 참여로 생성된 자동차 전장 소프트웨어 플랫폼 산업표준이다.

본 장에서는 자동차 전장 소프트웨어 플랫폼인 AUTOSAR 기술동향과 주요 이슈에 대해 살펴보고자 한다.

1. 오토사 개요

자동차산업에서 전장 시스템에 의한 새로운 가치 창출이 급격하게 늘어가고 있다. 이러한 혁신의 일환으로 해외 선진 자동차업체에서는 자동차 업리디 시스템의

(그림 6) AUTOSAR 주요 회원사[1]

기술혁신을 위해 표준 플랫폼 및 개발 방법론의 구축을 위해 노력하고 있다. 대표적인 사례가 AUTOSAR로 자동차 전자제어시스템의 공동 플랫폼 표준화 및 복잡한 소프트웨어를 모델 기반으로 개발할 수 있는 도구 기반의 개발 방법론을 함께 제시하고 있으며, 도구 간 인터페이스를 표준화된 XML(extensible Markup Language) 문서로 제안함으로써 상호호환성을 보장하여 스마트카 신규 서비스를 신속하게 개발할 수 있는 기반을 제공하고 있다. 국내는 현대차자동차, 한국전차 통신연구원이 프리미엄 밸브로 대성전기, 반도, 대우공업 과학기술연구원이 참여 밸브로 공동 중에 있다[1](그림 6 참조).

현재 자동차 원성차 업계에서는 AUTOSAR 규격이 공표된 버전을 중심으로 자동차에 적용하고 있으며, 자동차 업리디 시스템 기술의 선두주자인 BMW가 2006년에 자동차 바디 도메인에 시험 적용한 이후 AUTOSAR의 9개의 혁신 회원들은 자사의 차량에 2017년까지 단계적으로 AUTOSAR 플랫폼을 적용한다고 공표하였다.
(그림 7) AUTOSAR 핵심 업체의 양산 적용 일정[1]

Release 4.0.3, Release 4.1.3 등 주요 버전별로 병행 개발하고 있으며, AUTOSAR는 기본적으로 플랫폼의 명세를 개발하여 플랫폼의 구현은 참여하고 있는 회사의 도움으로, 현재는 주로 Vector, dSPACE, TTTech 등 소프트웨어 도구 벤더나 개발 서비스 제공업체에서 구현하여 자동차회사에 제공하고 있다. 그리고 AUTOSAR의 9개 핵심 회원들은 2008년부터 2012년까지 단계적으로 자사의 양산 자동차에 적용하였고, 2016년까지 지속적으로 확대 적용할 예정이다.(그림 7 참조), 국내의 경우, 현대자동차에서 R2.0을 개발한 사례가 있으며, 현재 현대오토론을 중심으로 AUTOSAR 4.0.3을 국산화 개발하고 있다. ETRI에서는 2008년부터 정부 과제로 AUTOSAR R3.0을 개발하였고, 인소프트 컨소시엄에서 현대모비스와 함께 AUTOSAR R3.1을 개발하였다.

나. 업체동향

AUTOSAR가 적용된 전자제어장치(ECU: Electronic Control Unit)의 개수는 (그림 8)에서 보는 바와 같이 2016년에는 2012년 대비 10배인 대략 3억개 정도가 양산될 것으로 예상되고 있다.

최근 AUTOSAR 오른 코너변스에서 콘티넨탈, 보쉬, BMW, 포드 등 대부분의 주요 자동차업체 및 부품업체들은 2013년 이후부터 4.0 버전을 사용하였다고 밝혔다. 2011년 BMW는 전체의 36%를 AUTOSAR 기반으로 생산했고, 29%는 AUTOSAR 부품을 사용하였으며 16%는 BMW 자체 솔루션을 이용하였으나, 2013년까지 AUTOSAR 3.1.2 버전 기반의 제품을 출시하고, 2015년 9월 이후에 출시될 모든 차량에 대해 AUTOSAR 4.0 솔루션을 적용할 계획이다. 또한, BMW는 제사를성 높은 AUTOSAR 기반 애플리케이션 개발과 시스템 설계 능력 확보에 중점을 두고 있다. 볼보의 경우, 2013년 이후에 출시된 차량에 대해서는 AUTOSAR 4.0.3을 기반으로 개발한 제품이고, 볼보사에 특화된 모델에 대해서도 AUTOSAR BSI에 추가하는 방안을 검토 중에 있는 것으로 알려지고 있다. GM은 2017년 이후 양산 적용되는 Global B 플랫폼 차량에 대해 AUTOSAR 4.0을 적용하겠다는 계획을 발표하였다. 도요타는 2013년 6월부터 AUTOSAR 4.1.1 버전에 대해 국산화 작업을 진행하고 있으며 2014년 국산화 완료 후, 2016년부터 자동차 제어장치에 적용하여 양산한 예정이다. 이외에도 아우디, 폭스바겐, 다틀러 등 기업이 3.x 이상의 AUTOSAR 버전을 채택하여 사업화할 예정이다.

다. 표준화 현황

AUTOSAR는 2003년 AUTOSAR가 결성된 이후 지속적으로 표준화를 제정 및 정비하고 있다. AUTOSAR에서 자동차 도메인을 바다, 제어, 파워트레인, HMI, 멀티미디어/뮬레티픽스 및 안전분야로 나누고 각 워크 키지별로 표준화를 단계에 따라 Phase 1, 2, 3로 나누

현대의 외 / 스마트카 적용 첩단 IT기술 및 산업표준 동향 15
<table>
<thead>
<tr>
<th>시기</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>협회 결성</td>
<td>BMW, Bosch, Continental, Daimler, Chrysler, Volkswagen, Siemens 등 초기 팀원 모집</td>
</tr>
<tr>
<td>Release 1.0</td>
<td>2005년 1월, Release 1.0버전(23개 BSW 관점)</td>
</tr>
<tr>
<td>Release 2.0</td>
<td>2006년 5월, Release 2.0버전(42개 BSW 관점), SW 구조 및 개발 방법론의 기능 능을 제공</td>
</tr>
<tr>
<td>Release 3.0</td>
<td>2007년 12월, Release 3.0버전(7개 BSW 관점), Application Interface 기술과의 Interface 7개 Spéc의 개발을 가독적으로 옵션 인터페이스 제안</td>
</tr>
<tr>
<td>Release 3.1</td>
<td>2008년 8월, R3.0에 OED-II 서비스를 포함한 버전</td>
</tr>
<tr>
<td>Release 3.2</td>
<td>2011년 5월, Partial Networking 및 bug fixing 관련한 사항, 요구사항을 반영하여 통신 스펙을 강화한 버전</td>
</tr>
<tr>
<td>Release 4.0</td>
<td>2009년 12월, Release 4.0버전(사양 개정 강화, 통신 스펙 강화, 통신 BSW 개발)</td>
</tr>
<tr>
<td>Release 4.1</td>
<td>2013년 3월, Release 4.1버전(Backward compatibility, Acceptance Test 추가)</td>
</tr>
<tr>
<td>Release 4.1</td>
<td>2013년 10월, Release 4.1,1에 대한 버전 강화</td>
</tr>
<tr>
<td></td>
<td>2014년 3월, Acceptance Test specification v1.0 발표</td>
</tr>
<tr>
<td></td>
<td>2014년 7월, Acceptance Test specification v1.0 발표</td>
</tr>
</tbody>
</table>

이전 버전의 개선(확장)

COM Manager, Diagnostic Communication Manager, Diagnostic Event Manager, Synchronized Time Base Manager 등

2014년 7월에 발표된 Acceptance Test specification v1.0은 기존의 R4.0에서 제공되었던 Conformance test specification을 대체하는 것으로 시스템의 인수자 입장에서 AUTOSAR 플랫폼이 적용된 타 전자제어장치와의 호환성을 확보하기 위한 기준을 제공한다. 국내는 AUTOSAR 표준화 관련하여 선도적인 신규 표준의 제안보다는 표준기술 및 동등한 기술을 독자적으로 고안하는 ETRI 등이 표준화 활동에 참여하고 있다.

IV. 결론

현재 자동차 제조사의 편의와 안전을 제공하기 위한 다양한 노력으로 국내에서 생산되는 차량들의 편의성과 안전성은 해외 유수의 자동차업체와 비교하여도 뒤지지 않는 수준에 이르렀다. 또한, 정부 주도로 이루어지는 미래 자동차의 로드맵과 연구 추진으로 무인 자동차와 자동화는 착차 현실로 다가오고 있다. 이러한 국내외 자동차의 고안점과 관련한 연구라는 시프트가 일어나는 기술동향에 맞게 고안하는 스타트가 적용된 정보 IT기술 및 자동차 산업표준인 AUTOSAR 표준동향에 대해 소개하였다. 자동차는 혼란정의 생산림수요가 하나의 독립적인 공간, 영역이라는 개념이 확산되면서 차량 탑승자의 안전과 편의를 제공하기 위한 다양한 노력이 체계적으로 이루어지고 있다.

상기에서 기술된 스마트가 적용 참가 IT기술 및 자동차 플랫폼은 이러한 차량산업체의 호흡에 편승한 여러 기술들을 제안하고 있으며, 국내에서도 산업체와 연구소 를 중심으로 표준화 작업 및 산업용품 개발에 활발하게 참여하고 있다. 또한, 스마트가의 대중화 확산을 위해
서는 ADAS(Advanced Driver Assistance System) 기술 혁신, 법/제도/안전규제 마련, 자동화 교통시스템 건설, 스마트카 기반의 사업모델 개발 등 수많은 성과가 해결되어야 한다. 이러한 성과의 해결을 통하여 무인 자동차 기반 서비스의 신뢰성 향상이 예상되며, 전기 자동차/수소연료전지차/무인자동차로 대표되는 미래형 자동차의 연구개발이 활발히 진행되는데 중심점이 될 것으로 기대한다.

음어해설

AUTOSAR 자동차차조제사와 공급업체 간 전장 소프트웨어의 재사용 및 효율성을 개선하고 자동차 생산비용 절감 및 새로운 전장 기능 개발의 필요를 마련하고자 2003년 6월 BMW, 독스바건, 콘라인델, 닝커스, 보쉬 등 세계적인 주요 자동차업체들의 공동 참여로 생성된 자동차 전장 소프트웨어 플랫폼 산업표준

WAVE 차량이 교통이동 환경에서 차량 간 또는 차량과 인프라 간의 통신을 통해 실시간에 주고 받을 수 있는 무선 통신 기술로, IEEE 802.11p 규격 무선변 경로 분산 통신기술을 차량환경에 맞도록 개발한 통신기술

표기 문제

ADAS Advanced Driver Assistance System

AUTOSAR AUTomotive Open System Architecture

CES Consumer Electronics Show

C2X Car to X

DoT Department of Transportation

DRM Digital Rights Management

ECU Electronic Control Unit

EDR Event Data Recorder

HMI Human-Machine Interface

IoT Internet of Things

IVI In-Vehicle Infotainment

IVN In-Vehicle Network

JPO Joint Program Office

LTE Long Term Evolution

OAA Open Automotive Alliance

P2V Pedestrian to Vehicle network

V2I Vehicle to Infrastructure network

V2V Vehicle to Vehicle ad-hoc network

V2X Vehicle to X

WAVE Wireless Access in Vehicular Environment

XML eXtensible Markup Language

참고문헌
