영양소유화제(乳化劑)는 기금사료의
에너지와 사료비용을 절약한다

에너지는 생산성이 높은(high performance) 동물들이
이 섭취하는 사료들 가운데 가장 비용이 많이 들어
가는 성분이다. 사료 배합설계에서 에너지밀도가 높은 유
지(油脂)들(fats and oils)은 중요한 에너지급원(給源)들로
서, 이 원재료들의 에너지이용효율 상승은 수익성 개선에
중요하다. 영양소유화제들(Nutritional emulsifiers) 사용
으로 지방소화율 개선과 에너지 이용효율 향상이 가능하
다. 영양소유화제들에 의한 지방소화율 상승은 사료비용
절감과 보다 경제적인 환경친화적 동물생산에 기여하는 결
과를 가져온다.

지방소화

유지(油脂:fat and oil) 또는 지질(脂質:lipid)이라는 용어
들은 여러 프로필의 지방산들(fatty acids)을 가진 트리글리
세리드들(triglycerides: 중성지방)을 가리킨다. 소의 유
리(遊離)지방산들(free fatty acids)은 글리세롤(glycerol)
같은 다른 유기화합물들과 결합하지 않은 지방산들을 가리
킨다. 지질들은 모든 영양소들 중에서 가장 높은 칼로리 값
을 가지므로 동물들의 주 에너지 급원으로 기여한다. 동물
이 사료함유 지방으로부터 얻을 수 있는 에너지량은 지방소화율에 따르며, 소화율이 높으면 지열의 유 효 에너지 (available energy) 합량이 높아진다.

동물에서 지방소화율은 지방의 여러 특성들과 사료에 첨가된 질대 지방함량과 관계가 있다. 연령과 같은 동물인자들도 또한 소화율에 영향을 미친다.

어떤 양은 자체 지질분해 소화효소(리파아제) 생산수준이 낮으므로 지방소화가 제한된다. 사료에 유화제(乳化劑, emulsifiers)들 첨가로 지방소화율 향상이 가능하다. 지방소화에서 처음단계는 수분이 많은 장내강(腸內腔) 환경에서 장운동(蠕動運動, peristaltic movement)의 도움으로 대형지방구(脂肪球, fat globules)들 을 함유한 유화액(乳化液)이 된다.

정상적으로 지방과 수분은 혼합되지 않으므로 자체생산 유화체인 담즙산염들과 뒤섞이므로써 지방구 생성과정을 돕는다. 소형지방구들 (Smaller fat droplets)이 형성되어 소화효소 리파아제와 접촉하는 표면을 늘어지며, 리파아제는 체내에서 생산되어 장내강으로 분비되고 지방을 분해한다. 지방과 기름(油脂)들은 글리세롤(glycerol)과 세 지방산들의 에스테르 (esters)들로서, 리파아제들의 작용에 의하여 지방산들은 글리세롤로부터 가수분해된다. 가수분해 결과 중성지방으로 부터 두 개의 지방산들과 하나의 모노글리세리드 (monoglyceride)를 만들어 낸다.

다음 단계는 미셀(micelles:乳質입자)들의 형성이다. 미셀들은 극성(極性) 및 비극성(非極性) 기(基) 양쪽을 가진다 지질분자들이 물에 녹아있는 모양(溶解模様, water soluble aggregates)들 이다. 분자는 미셀들 내에서 극성기들은 양극과 접해있는 외측(外側)에, 비극성기들은 미셀들 내부 지질중심부에 집단으로 모인다 (그림 2 참조). 담즙산염이 모노글리세리드는 유화체로서 미셀들 형성을

(주) hydrophilic head : 친수성 머리
Aqueous solution : 수용액
Hydrophobic tail : 친유성 꼬리

(그림 2) 지방소화 3 단계 1) 소형 유화구들 형성 2)리파아제의 의한 가수분해 3) 미셀들의 형성과 상피세포층에서 세포내 진입.
촉진한다. 미셀들이 미용모(微絨毛) 세포막(micro villous membrane)과 접촉하면, 미셀들은 파괴되고 지방산들은 친유성세포막(親油性細胞膜)에 의하여 흡수될 수 있다. 그림 2에 지방흡수 과정이 그려져 설명되어 있다.

영양소유화제(乳化剤)들

담즙산염들(Bile salts)은 자체생산유화제들(natural emulsifiers)이다. 향편 지방가수분해로 형성된 모노글리세리드(monoglycerides)도 유화제들로서 작용한다. 그러나 수 자체생산 유화제들 량(量)이 낮아서 유화제들 작용용량이 적어지면 지방소화에 제한요인이 될 수 있다. 어린동물들은 담즙산염들의 생산이 완전되어 있어서 생애초기에 지방소화를 증가시킨다. 또한 사료에 함유된 유지(油脂)특성도 지방소화율을 제한할 수 있다.

유리지방산들 함량이 높은 지방산 혼합물들은 모노글리세리드 형성이 되지 않으므로 낮은 유화용량(乳化容量)을 가진다. 장내(腸內)불포화지방산들과 모노글리세리드들은 미셀들을 첨성하고 왕편 낮은 균성(極性)이 특징인 유화(飽和)지방산들의 미셀형성 능력은 낮다. 지방의 특성은 지방 소화율 차이를 설명한다. 동물지방은 대부분 포화지방산들로서 이들은 식물성지방과 같은 불포화지방산들에 비하여 일반적으로 쉽게 소화되지 않는다. 한편 높은 수준의 유리지방산들은 소화율이 향상되나, 외진성(外

그림 3) 친수성-친유성 균형(HLB)은 0에서 20까지 범위의 척도를 가진다.
Balance (HLB) 원칙이 중요하다. HLB는 지방 또는 물에 한 제품의 용해정도를 판단하는 값을 제공한다. 시중 0에서 20까지이다. HLB가 낮음수록 지방성(疏水性)이 커지고 또한 섭유성(親油性) 유화체가 된다. HLB값이 높음수록 수용성(水溶性)이 커진 섭유성(親水性) 유화체가 된다(그림 3).

유화체의 사용목적에 따라 낮거나 높은 HLB를 가진 유화체들 중에서 어느것이 더 적절한지 여부를 결정해야한다. 이상적으로 유화체는 연속성(continuous phase)에 용해되어야 한다(Bacrot 경험이다). 소량의 물이 지방활영이 높은 환경으로 혼합할때는 낮은 HLB가 권장된다(지방성 유화체). 소량의 지방이 액상환경으로 혼합하려면, 높은 HLB는 가진 유화체가 요구 된다(수용성 유화체).

한정된 양의 지방이 장(腸)의 끝기에 많은 환경으로 혼합할 때에는 영양소유화제(nutritional emulsifier)가 사용되는 경우이다. 단 섭취 식료에 비하여 1.5~2배 더 많은 물을 흡수한다. 그리고 식료는 소량의 지방만을 흡수하므로, 장내강생물의 분자량은 지방보다 높다. 이러한 경우에는 높은 HLB가 더 적합하므로, 에센셜에너지플러스와 같은 매우 높은 HLB(매우 수용성)를 가진 영양소유화제를 사용한다. 이러한 영양소유화제의 HLB는 레시틴(lecithin)과 리소레시틴(lysolecithin) 같은 영양소유화제의 HLB보다 높다(그림 2). 높은 HLB의 효율로 인하여 지방 소화율 개선은 매우 높다.

동물 실험들

브로일러 사료에 함유될 지방의 소화율에 미치는 유화체들의 작용이 몇 개의 실험에서 증명되었다. 첫 번째 실험에서 모두 모두 비교적 높은 HLB를 가진 내 개의 영양소유화제들이 사료에 참가되었다. 내 개의 유화체들 모두 지방과

<table>
<thead>
<tr>
<th>표 1. 브로일러 사료의 지방, 조단백질(CP) 및 총에너지(GE) 그리고 에너지 함량(AMEn)</th>
<th>지방소화율 (%)</th>
<th>CP소화율 (%)</th>
<th>GE소화율 (%)</th>
<th>AMEn/kg DM</th>
<th>대조비 삼성량 (kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>대조</td>
<td>63.0a</td>
<td>56.9a</td>
<td>68.3a</td>
<td>13.17a</td>
<td>3147a</td>
</tr>
<tr>
<td>유화체 A</td>
<td>68.5b</td>
<td>60.1d</td>
<td>71.1b</td>
<td>13.71b</td>
<td>3276b</td>
</tr>
<tr>
<td>유화체 B</td>
<td>70.5b</td>
<td>59.8cd</td>
<td>71.3b</td>
<td>13.74b</td>
<td>3238b</td>
</tr>
<tr>
<td>유화체 C</td>
<td>68.6b</td>
<td>58.2ab</td>
<td>70.5b</td>
<td>13.60b</td>
<td>3250b</td>
</tr>
<tr>
<td>유화체 D</td>
<td>67.6ab</td>
<td>58.6bc</td>
<td>71.2b</td>
<td>13.75b</td>
<td>3285b</td>
</tr>
</tbody>
</table>

같은 측에서 다른 정제조합을 가진 토마토 샌드위치의 유의성 분석은 $p<0.05$에서 유의하다(표).

표 2. 영양소유화제 첨가 사료를 급여한 브로일러의 전 사육기간 (0~39일령) 생산성

<table>
<thead>
<tr>
<th>구분</th>
<th>사료 1</th>
<th>사료 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>지방조성</td>
<td>높은 비율 U/S, 높은 FFA</td>
<td>낮은 비율 U/S, 높은 FFA</td>
</tr>
<tr>
<td>에너지수량(ME)</td>
<td>기초</td>
<td>-5.3%</td>
</tr>
<tr>
<td>영양소유화제</td>
<td>무첨가</td>
<td>첨가</td>
</tr>
<tr>
<td>체중 39일령(g)</td>
<td>1675</td>
<td>1630</td>
</tr>
<tr>
<td>평균일당체중(g/일)</td>
<td>67.5</td>
<td>66.3</td>
</tr>
<tr>
<td>체중증가량조교요구일(26일령)</td>
<td>1,549</td>
<td>1,646</td>
</tr>
<tr>
<td>체중증가량조교요구일(39일령)</td>
<td>1,464</td>
<td>1,505</td>
</tr>
</tbody>
</table>

(주) U/S: 불포화지방산/포화지방산, FFA:유리지방산, 영양소유화제는 에센셜에너지플러스,
表 3. 여러 ME 함량을 지시하도록 설계된 브로일러사료
(육성기 10~30일령)의 원가

<table>
<thead>
<tr>
<th>ME (kcal/kg)</th>
<th>3050</th>
<th>3100</th>
<th>3150</th>
<th>3200</th>
</tr>
</thead>
<tbody>
<tr>
<td>원가 ($/MT)</td>
<td>395</td>
<td>401</td>
<td>408</td>
<td>414</td>
</tr>
<tr>
<td>지방첨가 (%)</td>
<td>3.7</td>
<td>4.8</td>
<td>5.9</td>
<td>7.1</td>
</tr>
<tr>
<td>총 지방 (%)</td>
<td>5.6</td>
<td>6.7</td>
<td>7.8</td>
<td>8.8</td>
</tr>
<tr>
<td>곡물류 (%)</td>
<td>68</td>
<td>67</td>
<td>65</td>
<td>64</td>
</tr>
<tr>
<td>대두粕 (%)</td>
<td>25.3</td>
<td>25.5</td>
<td>25.7</td>
<td>25.8</td>
</tr>
</tbody>
</table>

에너지 소화율을 증가 시켰다. 그리고 지방 소
화율 증가는 사료에 높은 외란상대사에너지
(AMEn)값을 가지였다. 유화제B(액센셜에너지
폴러스)는 지방소화율을 가장 많이 높여서 상승
된 에너지가 거의 140kcal에 가까웠다. 표 1.

두번째 실험에서, 영양소유화제 B(액센셜에너지
폴러스)를 첨가한 지에너지 사료의 배합설계
가 가능하게 실험하였다. 두 가지의 다른 기초사
료에 여러 농도의 지방함량을 허용시켜서 실험
되었다. 사료 1은 전통적 지방함량을 허용하였
다. 사료 2는 높은 포화지방산을 허용하고 높은
수준의 유라지방산을 허용한 것이다. 두가지 사
료에 대한 전(金) 사육기간의 실험성적은 표 2에
요약 되었다. 에너지함량이 낮아도 유화제를 첨
가한 사료들은 급여변에 대조사료와 동일한 생
산성을 보였다. 생산성은 영양소유화제(액센셜
에너지폴러스) 첨가로 5.3% 낮은 에너지 함량을
보상하는 것이 가능하다는 것을 보였다.

에너지 절약, 비용 절약

사료에 영양소유화제(액센셜에너지폴러스)
첨가는 사료중 에너지함량 저하를 보상할 수 있
다. 이점은 브로일러 사육업자들에게 무엇을 의
미하는가? 영양소유화제 첨가로 사료가 낮은 에
너지 함량으로 배합설계가 가능하므로 비싼 지
방 첨가료 저하시킬 수 있고, 결과로서 사료제
조 원가(原價)를 낮출 수 있다는 것을 의미한다.
원가에 미치는 이러한 영양소유화제의 효능법
위는 사료설계에 있어서 영양적 제한점들과 사
료원료가격들에 따른다. 영양제한 사항들과 사
료원료가격들 지역들에 따라 다르고 그리고
시간에 따라 다양할 것이다. 유화제 점가효능의
크기에 대한 하나의 통찰력을 얻기 위하여 여러
에너지 함량을 가진 전형적인 브로일러사료가
배합설계되었다. 표3에는 사료의 원가에 미치는
효과를 나타내었다. 이러한 실험 결과로부터 기초
사료의 에너지 함량을 3150에서 3050kcal로 저
하는 지방과 기름의 점가를 감소시킬 것이다.
이점은 10US$/MT 보다 많은 원가의 절약을 유
발한다.

영양소유화제 배합은 사료비용을 절감한다

에너지의 생산성이 높은 동물들의 사료비용을
저하하는 주 성분이다. 영양소유화제들은 지방
소화율 향상에 사용이 가능하므로 에너지 이용
효율을 개선한다. 실험대비, 현재에서 영양소유
화제에 의한 지방소화율 향상은 낮은 에너지 함
량의 사료들에 영양소유화제 배합설계로 높은
에너지 함량의 사료와 동일한 생산성유지가 가
능하다는 것을 의미한다. 영양소 유화제 사료의
사료비용을 절감하고 보다 경제적 진환경적
동물 생산에 기여한다.

자료 : Marc Rovers, Orffa Excetials, The
Netherlands, Saving energy and feed costs with
nutritional emulsifier, International Poultry
Production Volume 22 Number 4, 2014